
- •Медицинская генетика
- •Оглавление:
- •Глава I: Краткая история медицинской генетики………………………….........6
- •Глава II: Нуклеиновые кислоты
- •2.3: Этапы реализации генетической информации
- •Глава III: Цитологические основы наследственности.
- •Глава IV: Закономерности наследования признаков
- •4.1: Основные понятия и термины современной генетики.
- •4.3: Закономерности наследования
- •Глава V: Особенности наследования признаков при отклонении
- •Глава VI: Генетические, биологические и
- •Глава VII: Медицинские аспекты изменчивости……………………………….95
- •Глава IX: Наследственные болезни человека………………………………..…121
- •Глава X: Профилактика наследственных заболеваний и
- •Глава XI: Значение знаний генетики для практической медицины……...…151
- •11.2: Биологические и социальные аспекты генетической
- •11.3: Достижения генетики в диагностике
- •Введение
- •Краткая история медицинской генетики.
- •Глава II Нуклеиновые кислоты. Генетический код. Программирование синтеза белка в клетке.
- •2.1 Открытие нуклеиновых кислот. Доказательства роли днк.
- •2.2.Строение нуклеиновых кислот.
- •2.3 Этапы реализации генетической информации. Транскрипция. Процессинг.
- •2.4. Генетический код. Свойства кода.
- •2.5 Трансляция. Биосинтез белка.
- •2.6 Репарационные процессы днк.
- •2.7 Задачи по молекулярной генетики:
- •2.8 Алгоритм решения типовых задач
- •Цитологические основы наследственности. Метафазные хромосомы. Кариотип человека.
- •3.1 Наследственное вещество клетки
- •3.2.Правила хромосом. Кариотип человека.
- •Слева — женщины, справа — мужчины; вверху — хромосомные комплексы, внизу — идиограммы
- •3.3. Гетеро-, эухроматин и половой хроматин
- •Глава IV Закономерности наследования признаков при моно- ди- и полигибридном скрещивании.
- •4.1. Основные понятия и термины современной генетики. Влияние генотипической среды и факторов внешней среды на проявление признаков.
- •4.2. Плейотропное (множественное) действие генов.
- •4.3 Закономерности наследования при моногибридном скрещивании
- •I закон: Закон единообразия гибридов I поколения:
- •II закон: Закон расщепления:
- •4.4. Закономерности при ди- и полигибридном скрещивании
- •4.5 Задачи по теме: «Закономерности наследования»
- •4.6 Алгоритм решения типовых задач
- •Глава V Особенности наследования признаков при отклонении от закономерностей законов Менделя
- •5.1 Множественный аллелизм.
- •5.2. Промежуточное наследование
- •5.3. Эпистатическое взаимодействие генов
- •5.4. Комплементарное взаимодействие генов
- •5.5. Полимерное взаимодействие генов
- •5.6. Сцепленное наследование
- •5.7. Нарушение полного сцепления
- •5.8 Задачи по теме: «Особенности наследования признаков при отклонених от закономерностей наследования»
- •5.9 Алгоритмы решения типовых задач
- •1. Определите вероятность заболевания детей в семье, где один из супругов гетерозиготен, а другой нормален в отношении анализируемого признака.
- •2. Определите вероятность заболевания детей от брака двух гетерозиготных родителей.
- •Глава VI Генетические, биологические и социальные аспекты пола.
- •6.1 Генетика и биология пола
- •6.2 Половые генетические аномалии.
- •6.3 Соматические половые аномалии
- •6.4 Задачи по теме «Генетика пола»
- •6.5 Алгоритм решения типовых задач
- •Глава VII Медицинские аспекты изменчивости
- •7.1 Модификационная изменчивость.
- •7.2 Комбинативная изменчивость
- •7.3 Мутационная изменчивость. Классификация мутиций.
- •I. По причинам: спонтанные и индуцированные.
- •II. По мутировавшим клеткам: генеративные и соматические.
- •III. По изменению генетического материала мутации подразделяют на следующие: генные, хромосомные перестройки, геномные.
- •IV. По изменению фенотипа:
- •V. По исходу для организма:
- •Глава VIII Генетика человека
- •8.1 Методы изучения генетики человека.
- •8.2 Графическое изображение родословных
- •8.3 Типы наследования. Критерии наследования
- •8.4. Задачи по теме: «Генетика человека»
- •8.5. Алгоритм решения типовых задач
- •Глава IX Наследственные болезни человека
- •9.1 Классификация Наследственных болезней
- •9.2 Врожденные заболевания
- •9.3 Хромосомные болезни
- •9.4 Синдромы с числовыми аномалиями половых хромосом.
- •9.5 Синдромы с числовыми аномалиями аутосом
- •9.6 Генные болезни
- •Глава X Профилактика наследственных заболеваний и врожденных пороков развития
- •10.1 Медико-генетическое консультирование
- •10.2 Основные принципы консультирования
- •10.3 Этапы консультирования
- •10.4 Методы пренатальной диагностики.
- •Глава IX Значение знаний генетики для практической медицины
- •11.1 Генная и клеточная инженерия. Биотехнология.
- •11.2 Биологические и социальные аспекты генетической экспертизы
- •11.3 Достижения генетики в диагностике и профилактикенаследственной патологии
- •Список литературы
3.3. Гетеро-, эухроматин и половой хроматин
Наиболее подходящей фазой для исследования хромосом является метафаза митоза. Для изучения хромосом чаще используют препараты кратковременной культуры крови, полученные через 48—72 ч после взятия крови, но могут быть использованы клетки костного мозга и культуры фибробластов.
При приготовлении препаратов хромосом к культуре клеток добавляют колхицин, который разрушает веретено деления и останавливает деление клетки в метафазе. Затем клетки обрабатывают гипотоническим раствором, после чего их фиксируют и окрашивают.
Для окраски хромосом чаще используют краситель Романовского —Гимзы, 2 % ацеткармин или 2 % ацетарсеин. Они окрашивают хромосомы целиком, равномерно (рутинный метод) и могут быть использованы для выявления численных аномалий хромосом человека (45, 47 и т. д.).
Для получения детальной картины структуры хромосом, идентификации (определения) отдельных хромосом или их сегментов используют различные способы дифференциального окрашивания. Один из них — G-метод: по длине хромосомы выявляется ряд окрашенных и неокрашенных полос. Чередование этих полос и их размеры строго индивидуальны и постоянны для каждой пары гомологичных хромосом, поэтому при дифференциальной окраске можно легко определить, к какой паре относится хромосома, если даже пары сходны между собой по размерам и форме. Например, хромосомы 13, 14, 15-й пар трудно отличить при равномерной окраске, а при дифференциальной — рисунок исчерченности (чередование и размер темных и светлых полос) неодинаков (см. рис. 8).
Рис.8 Схематические карты хромосом человека при их дифференциальной окраске.
Хроматин клеточного ядра подразделяется на два основных типа: на эу- и гетерохроматин. Это наследственный материал различной степени спирализации и упаковки белками различной степени конденсации.
Эухроматин (от греч. ей — полностью и chroma — цвет) в метафазных хромосомах виден в виде светлых полос. В интерфазе (между делением клетки, когда ядро оформленное) находится в деспирализованном состоянии, то есть образует невидимые в световой микроскоп фибриллы (от новолат. fibrilla — волоконце, ниточка). Как правило, в эухроматине находятся структурные активные уникальные гены, которые контролируют развитие признаков организма. Эухроматин менее плотно упакован и доступен для ферментов РНК-полимераз, обеспечивающих синтез и-РНК, а затем синтез белков.
Гетерохроматин определяется в метафазных хромосомах при дифференциальном окрашивании в виде темных полос различных размеров, состоящих из конденсированной (спирализованной) плотно упакованной молекулы ДНК. Даже в интерфазном ядре гетерохроматин в виде глыбок хорошо виден в световой микроскоп. Чаще всего он расположен вокруг ядрышка и около ядерной оболочки. Переписывания информации и-РНК с данных участков не происходит. Эти гены неактивны.
Различают также структурный и факультативный гетерохроматин. Структурный гетерохроматин в интерфазном ядре спирализован, плотно упакован и в метафазных хромосомах постоянно обнаруживается вокруг центромеры всех 46 хромосомах (составляет около 13 % от генома). Расположение темных полос для каждой пары хромосом строго индивидуально. Функция структурного гетерохроматина в целом пока неясна.
Факультативный гетерохроматин появляется в интерфазном ядре не всегда. Он представляет собой спирализованный эухроматин. В метафазных хромосомах факультативный гетерохроматин не обнаруживают. Например, в ядрах клеток женщин в диплоидном наборе имеется две Х-хромосомы, одна из которых полностью инактивирована (спирализована, плотно упакована) уже па ранних этапах эмбрионального развития и видна в виде глыбки гетерохроматина, прикрепленного к оболочке ядра. Благодаря этому женские и мужские организмы уравновешиваются по количеству функционирующих генов, сцепленных с полом, так как у мужчин одна Х-хромосома и одна доза генов Х-хромосомы. Инактивированная Х-хромосома называется половым хроматином или тельцем Барра. Половой хроматин обычно определяют путем анализа эпителиальных клеток в соскобе слизистой оболочки щеки. Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании — синдроме Шерешевского —Тернера (кариотип 45, ХО). Присутствие у мужчин тельца Барра свидетельствует о наследственном заболевании - синдроме Клайнфельтера (кариотип 47, XXY).
Ученые считают, что в клетках по мере специализации все большее число генов инактивируется (выключается), эухроматин переходит в гетерохроматин.