
- •1.01. Понятие типового динамического звена. Применение звеньев. Основные типы звеньев и их характеристики.
- •1.02. Использование преобразования Лапласа при рассмотрении систем автоматического регулирования (примеры).
- •1.03. Передаточные функции. Их получение и использование.
- •1.04. Частотная передаточная функция. Применение, примеры.
- •1.05. Передаточные функции типовых комбинаций звеньев (с выводом).
- •1.06. Изменение свойств динамического звена с помощью обратной связи (примеры).
- •1.07. Получение временных характеристик объекта регулирования экспериментально и из его дифференциального уравнения, их использование.
- •1.08. Частотные характеристики звеньев.
- •1.09. Исследование систем управления с помощью частотных характеристик.
- •1.10. Статические звенья нулевого и первого порядка: уравнение, примеры, характеристики, основные свойства.
- •1.11. Статические звенья второго порядка: уравнение, примеры, характеристики, основные свойства.
- •1.12. Идеальное интегрирующее звено: уравнение, примеры, характеристики, основные свойства.
- •1.13. Звено запаздывания: уравнение, примеры, характеристики, основные свойства.
- •1.14. Дифференцирующие звенья: уравнение, примеры, характеристики, основные свойства.
- •1.15. Устойчивость систем автоматического регулирования.
- •1.16. Предельное усиление регулятора и обеспечение запаса устойчивости.
- •1.17. Определение устойчивости систем автоматического регулирования с помощью частотного критерия устойчивости Найквиста.
- •1.18. Определение параметров настройки регулятора с помощью частотного критерия устойчивости Найквиста.
- •1.19. Статические, нейтральные и неустойчивые объекты регулирования.
- •1.20. Самовыравнивание объектов регулирования: характеристики, примеры.
- •1.21. Объекты регулирования с сосредоточенными параметрами и с распределёнными параметрами. Особенности регулирования объектов с распределёнными параметрами.
- •1.22. Выбор закона действия регулятора и параметров его настройки в зависимости от свойств объекта регулирования.
- •1.23. Влияние свойств объекта регулирования: на выбор структуры системы регулирования; на выбор закона действия регулятора; на качество регулирования.
- •1.24. Основные линейные законы регулирования: уравнения, основные свойства, примеры.
- •1.25. Классификация и особенности законов регулирования.
- •1.26. Пропорциональный закон регулирования: уравнение, основные свойства, характеристики.
- •1.27. Пропорциональный и пропорционально-дифференциальный законы регулирования: уравнения, характеристики, основные свойства.
- •1.28. Интегральный закон регулирования: уравнение, характеристики, основные свойства.
- •1.29. Пропорционально-интегральный закон регулирования: уравнение, характеристики, основные свойства.
- •1.30. Пропорционально-интегрально-дифференциальный закон регулирования: уравнение, характеристики, основные свойства.
- •1.31. Пропорционально-дифференциальный и пропорционально-интегрально-дифференциальный законы регулирования: уравнение, характеристики, основные свойства.
- •1.32. Релейные (позиционные) регуляторы: основные свойства, характеристики.
- •2. Измерение технологических параметров
- •2.01. Основные методы измерения: их особенности, достоинства, недостатки, примеры.
- •2.02. Нулевой метод измерения (на примере электрических измерений).
- •2.03. Функциональная схема информационно-измерительной системы.
- •2.04. Статические свойства средств измерения.
- •2.05. Статические и динамические свойства средств измерения и других элементов сар, их влияние на качество регулирования.
- •2.06. Переходные характеристики средств измерения.
- •2.07. Погрешности измерений.
- •2.08. Измерение электрического сопротивления как носителя информации о состоянии химико-технологического процесса.
- •2.09. Измерение электрического напряжения как носителя информации о состоянии химико-технологического процесса.
- •2.10. Промежуточные измерительные преобразователи.
- •2.11. Классификация приборов для измерения температуры.
- •2.12. Погрешности измерения температуры контактным и бесконтактным методами.
- •2.13. Термоэлектрические термометры и термометры сопротивления.
- •2.14. Измерение температуры с помощью термоэлектрических преобразователей (термопар).
- •2.15. Измерение температуры с помощью манометрических термометров и термометров расширения.
- •2.16. Измерение температуры бесконтактным методом.
- •2.17. Термометры излучения.
- •2.18. Основные конструкции приборов для измерения давления. Защита манометров от воздействия агрессивных, горячих и загрязнённых сред.
- •2.19. Измерение расхода газов и жидкостей.
- •2.20. Измерение расхода газов и жидкостей. Расходомеры переменного и постоянного перепада давления.
- •Расходомеры переменного перепада давления
- •Расходомеры постоянного перепада давления
- •2.21. Измерение расхода газов и жидкостей. Электромагнитный, ультразвуковой, вихревой и кориолисов расходомеры. Электромагнитные расходомеры
- •Ультразвуковые расходомеры
- •Вихревые расходомеры
- •Кориолисовы расходомеры
- •2.22. Измерение расхода газов и жидкостей на основе тепловых явлений.
- •2.23. Объёмные счётчики газа и жидкости.
- •2.24. Измерение уровня жидкости. Гидростатические, ёмкостные, ультразвуковые уровнемеры.
- •2.25. Термокондуктометрический и термохимический газоанализаторы.
- •2.26. Термомагнитный газоанализатор.
- •2.27. Газоанализаторы инфракрасного поглощения.
- •3.01. Назначение, цели и функции систем управления химико-технологическими процессами.
- •3.02. Особенности управления химико-технологическими процессами. Основные типы систем автоматического регулирования.
- •3.03. Классификация регуляторов по различным признакам.
- •3.04. Классификация систем автоматического управления по различным признакам. (стр. 53)
- •3.05. Системы автоматического управления без обратной связи и с обратной связью. Комбинированные системы управления.
- •3.06. Регулирование без обратной связи (регулирование по возмущающему воздействию).
- •3.07. Одноконтурные и многоконтурные системы автоматического регулирования.
- •3.08. Многоконтурные системы автоматического регулирования (системы каскадного регулирования).
- •3.09. Многоконтурные системы автоматического регулирования (системы связанного регулирования).
- •3.10. Функциональная структура системы автоматического регулирования.
- •3.11. Критерии (показатели) качества регулирования.
- •3.12. Определение статической ошибки регулирования экспериментально и по математической модели сау (по каналам возмущающего и задающего воздействий).
- •3.13. Исполнительные устройства сар.
- •3.14. Исполнительные механизмы систем автоматического регулирования.
- •3.15. Регулирующие органы сар: конструкция, характеристики, свойства.
2.19. Измерение расхода газов и жидкостей.
2.20-2.22
2.20. Измерение расхода газов и жидкостей. Расходомеры переменного и постоянного перепада давления.
Расход — количество вещества (жидкости, пара, газа), проходящее через данное сечение (например, трубопровода) в единицу времени. Различают объемный расход, измеряемый в единицах объема в единицу времени (м3/ч, м3/с), и массовый расход, измеряемый в единицах массы в единицу времени (кг/с, кг/ч, т/ч).
Массовый расход можно измерить косвенно по объемному расходу, учитывая плотность измеряемой среды и влияние на плотность температуры и давления.
Приборы, измеряющие расход вещества, называют расходомерами.
Прибор, одновременно измеряющий расход и количество вещества, называют расходомером со счетчиком. Расходомер измеряет текущее значение расхода, а счетчик выполняет интегрирование текущих значений расхода.
Устройство (диафрагма, сопло, напорная трубка), непосредственно воспринимающее измеряемый расход и преобразующее его в другую величину, удобную для измерения (например, в перепад давления), называют преобразователем расхода.
Расходомеры переменного перепада давления
Принцип действия расходомеров этой группы основан на зависимости перепада давления, создаваемого неподвижным устройством, устанавливаемым в трубопроводе, от расхода вещества.
Измерение расхода по перепаду давления на сужающем устройстве
При измерении расхода методом переменного перепада давления в трубопроводе, по которому протекает среда, устанавливают сужающее устройство (СУ), создающее местное сужение потока. Средняя скорость потока в суженном сечении повышается. В результате статическое давление в этом сечении становится меньше статического давления перед СУ. Разность этих давлений тем больше, чем больше расход протекающей среды, и, следовательно, она может служить мерой расхода.
Измерение расхода вещества методом переменного перепада давления возможно при соблюдении условий:
поток вещества заполняет всё поперечное сечение трубопровода;
поток вещества в трубопроводе является практически установившимся;
фазовое состояние вещества, протекающего через СУ, не изменяется (жидкость не испаряется; газы, растворенные в жидкости, не десорбируются; пар не конденсируется).
В качестве сужающих устройств для измерения расхода широко применяются стандартные сужающие устройства:
Стандартная диафрагма;
Сопло ИСА 1932;
Расходомерная трубка Вентури;
Сопло Вентури.
Измерение расхода с помощью напорных трубок
Напорными трубками называют устройства для измерения величины и направления скорости, а также расхода жидкости или газа, действие которых основано на измерении давления в потоке.
При измерении расхода с помощью напорных трубок, как и при измерении расхода с помощью сужающих устройств, используется метод переменного перепада давлений.
Напорные трубки:
Трубка Пито.
Напорная трубка Прандтля.
Напорные трубки аннубар.
Расходомеры постоянного перепада давления
Расходомеры постоянного перепада давления относят к средствам измерения, называемым расходомерами обтекания. Принцип их действия основан на зависимости перемещения тела, воспринимающего динамическое давление обтекающего его потока, от расхода вещества. Предназначены для измерения плавно меняющегося объемного расхода однородных потоков чистых и слабо загрязненных жидкостей и газов.
Простейшим и наиболее распространенным прибором постоянного перепада давления является ротаметр. Противодействующая сила в расходомерах данного типа — сила тяжести чувствительного элемента, изготавливаемого в виде поплавка (или поршня).