
- •Курсовая работа
- •Введение
- •Исходные данные
- •Построение гидрографа реки
- •Вычисление и построение кривых обеспеченности среднемноголетних расходов реки
- •Выбор по исходному ряду среднегодовых расходов
- •Определение параметров кривой обеспеченности , ,
- •Вычисление средней квадратической ошибки определения
- •3.4 Вычисление и построение фактической и теоретической кривых обеспеченности среднемноголетних расходов
- •Вычисление и построение кривых обеспеченности средних максимальных расходов реки
- •4.1 Выбор по исходному ряду наибольших среднемесячных расходов
- •4.2 Определение параметров кривой обеспеченности
- •4.3 Вычисление средней квадратической ошибки определения
- •4.4 Выбор класса гтс проектируемого гидроузла
- •4.5 Вычисление и построение фактической и теоретической кривых обеспеченности максимальных среднемесячных расходов для основного ( и поверочного случаев
- •5. Вычисление и построение кривых обеспеченности средних минимальных расходов реки
- •5.1 Выбор по исходному ряду наименьших среднемесячных расходов
- •5.2 Определение параметров кривой обеспеченности , ,
- •5.3 Вычисление средней квадратической ошибки определения
- •5.4 Вычисление и построение фактической и теоретической кривых обеспеченности минимальных среднемесячных расходов
- •Заключение
- •Список использованных источников
- •Приложение 1
- •Приложение 2
- •Приложение 3
Определение параметров кривой обеспеченности , ,
Средний многолетний расход вычисляется по формуле:
(3.1)
где
– сумма среднемесячных расходов за 50
лет;
– период
наблюдений (количество лет).
Затем вычисляем модульные коэффициенты K как отношение
(3.2)
где
– соответствующее значение расхода,
за период наблюдений.
Для проверки вычислений следует помнить, что сумма значений К должна равняться общему числу членов ряда :
Вычисляем
отклонения от середины
.
Для проверки: сумма
должна быть равна нулю. Затем подсчитываем
.
Далее подсчитываем
.
Контроль построения теоретической кривой обеспеченности расходов выполняется следующим образом:
(3.3)
где
– порядковый номер члена ряда;
– общее число членов ряда.
Коэффициент вариации вычисляется по формуле:
(3.4)
Коэффициент асимметрии вычисляется по формуле:
(3.5)
Вычисление средней квадратической ошибки определения
Средняя квадратическая ошибка определения коэффициента вариации вычисляется по формуле:
(3.6)
Относительная средняя квадратическая ошибка определения коэффициента вариации определяется по таблице 8 (Приложение 1).
В
нашем случае предельное значение
:
Так как, полученное значение примерно равно предельному, то коэффициент вариации можно принимать допустимым для данного ряда.
Средняя квадратическая ошибка коэффициента асимметрии вычисляется по формуле:
(3.7)
Относительная
средняя квадратическая ошибка определения
коэффициента асимметрии
определяется по таблице 9 (Приложение
2).
В нашем случае предельное значение :
Допустимое
значение намного меньше полученного,
следовательно, принимаем
.
Вычислим среднюю квадратическую ошибку коэффициента асимметрии для полученного коэффициента асимметрии:
Полученное значение ошибки получилось меньше допустимого, значит коэффициент асимметрии подходит для данного ряда.
3.4 Вычисление и построение фактической и теоретической кривых обеспеченности среднемноголетних расходов
Зная
величины параметров
,
и
вычисление теоретической кривой
обеспеченности средних годовых расходов
производят по таблице 10 С.И. Рыбкина –
П.А. Алексеева (Приложение 3), в которой
даны относительные отклонения от
середины ординат интегральной кривой
при
и разных процентах обеспеченности
.
По
данным таблицы 10 (Приложение 3) определяем
значения ординат
при
и записываем их во вторую строку таблицы
3 (строка
).
Таблица 3 – Данные для вычисления теоретической кривой обеспеченности среднемноголетних расходов реки.
p, % |
1 |
3 |
5 |
10 |
20 |
50 |
75 |
95 |
97 |
99 |
99,9 |
|
2,68 |
2,08 |
1,77 |
1,32 |
0,81 |
-0,08 |
-0,71 |
-1,49 |
-1,66 |
-1,96 |
-2,40 |
|
0,681 |
0,528 |
0,450 |
0,335 |
0,206 |
-0,020 |
-0,180 |
-0,379 |
-0,422 |
-0,498 |
-0,610 |
|
1,68 |
1,53 |
1,45 |
1,34 |
1,21 |
0,98 |
0,82 |
0,62 |
0,58 |
0,50 |
0,39 |
|
117,9 |
107,3 |
101,7 |
93,7 |
84,6 |
68,8 |
57,5 |
43,6 |
40,6 |
35,2 |
27,4 |
Вычисление
теоретической кривой обеспеченности
средних годовых расходов воды р. Паша
при
,
и
.
В
виду того, что отклонения кривой от
середины пропорциональны
,
все значения
умножаются на
с точностью до тысячных (строка 3 табл.
3).
В
таблице 3 значения
указывают отклонения ординат кривой
от среднего значения ряда, которое
принято равным единице, поэтому при
определении модульных коэффициентов
для построения кривой обеспеченности
прибавляется единица (строка 4:
.
Затем
чтобы найти расход Q,
соответствующий каждой величине заданной
(вычисляемой) обеспеченности Р,
необходимо значение
для построения кривой обеспеченности
умножить на Qср
= 70,18 м3/с.
Откладывая
по оси ординат значения, приведённых
средних годовых расходов Q,
из строки 5
табл. 3, а по оси абсцисс соответствующие
проценты обеспеченности, получим точки,
по которым и проводим кривую, называемую
теоретической кривой обеспеченности
расходов (рис. 3.1), построенную в простых
координатах. Её недостаток в следующем:
она имеет верхнюю и нижнюю ветви кривой
с крутыми подъёмами, где малым приращениям
абсцисс соответствуют большие приращения
ординат, что не позволяет достаточно
точно снимать значения
.
Кривые обеспеченности представлены на рисунке 3.1.
Рисунок 3.1 Кривые обеспеченности среднемноголетних расходов реки Паша