
- •Курсовая работа
- •Содержание
- •Введение
- •1 Исходные данные
- •2 Построение гидрографа реки
- •3 Вычисление и построение кривых обеспеченности среднемноголетних расходов реки
- •3.1 Выбор по исходному ряду среднегодовых расходов
- •3.2 Определение параметров кривой обеспеченности , ,
- •3.3 Вычисление средней квадратической ошибки определения
- •3.4 Вычисление и построение фактической и теоретической кривых обеспеченности среднемноголетних расходов
- •4 Вычисление и построение кривых обеспеченности средних максимальных расходов реки
- •4.1 Выбор по исходному ряду наибольших среднемесячных расходов
- •4.2 Определение параметров кривой обеспеченности
- •4.3 Вычисление средней квадратической ошибки определения
- •4.4 Выбор класса гтс проектируемого гидроузла
- •4.5 Вычисление и построение фактической и теоретической кривых обеспеченности максимальных среднемесячных расходов для основного ( и поверочного случаев
- •5. Вычисление и построение кривых обеспеченности средних минимальных расходов реки
- •5.1 Выбор по исходному ряду наименьших среднемесячных расходов
- •5.2 Определение параметров кривой обеспеченности , ,
- •5.3 Вычисление средней квадратической ошибки определения
- •5.4 Вычисление и построение фактической и теоретической кривых обеспеченности минимальных среднемесячных расходов
- •Заключение
- •Список использованных источников
- •Приложение 1
- •Приложение 2
- •Приложение 3
3.2 Определение параметров кривой обеспеченности , ,
Средний многолетний расход вычисляется по формуле:
|
(3.2.1) |
где
– сумма среднемесячных расходов за 50
лет, (
);
– период
наблюдений (количество лет),
;
Модульные коэффициенты K:
|
(3.2.2) |
где
– соответствующее значение расхода,
за период наблюдений.
Для проверки вычислений следует помнить, что сумма значений К должна равняться общему числу членов ряда :
Далее
вычисляют отклонения от середины
.
Для проверки: сумма
должна быть равна нулю. Затем подсчитывают
и
.
Контроль построения теоретической кривой обеспеченности расходов выполняется следующим образом:
|
(3.2.3) |
где
– порядковый номер члена ряда;
– общее число членов ряда.
Коэффициент вариации вычисляется по формуле:
|
(3.2.4) |
Коэффициент асимметрии вычисляется по формуле:
|
(3.2.5) |
3.3 Вычисление средней квадратической ошибки определения
Средняя квадратическая ошибка определения коэффициента вариации вычисляется по формуле:
|
(3.3.1) |
Допустимая ошибка = 10,7%
Средняя квадратическая ошибка коэффициента асимметрии вычисляется по формуле:
|
(3.3.2) |
,
Допустимая ошибка = 100,1%
Данная
ошибка получилась намного выше среднего
значения, поэтому для построения кривой
обеспеченности берём
3.4 Вычисление и построение фактической и теоретической кривых обеспеченности среднемноголетних расходов
Зная
величины параметров
,
и
вычисление
теоретической кривой обеспеченности
средних годовых расходов производят
по таблице 10 С.И. Рыбкина – П.А. Алексеева
(Приложение 3), в которой даны относительные
отклонения от середины ординат
интегральной кривой при
и разных процентах обеспеченности
.
По
данным таблицы 10 (Приложение 3) определяют
значения ординат
при
и
записывают их во вторую строку таблицы
3 (строка
).
Таблица 3 – Данные для вычисления теоретической кривой обеспеченности среднемноголетних расходов реки Чикой
P, % |
1 |
3 |
5 |
10 |
20 |
50 |
70 |
90 |
95 |
97 |
99 |
99,9 |
Ф |
2,48 |
1,96 |
1,70 |
1,30 |
0,82 |
-0,03 |
-0,55 |
-1,25 |
-1,57 |
-1,78 |
-2,16 |
-2,76 |
Ms=Ф*Cv |
0,49 |
0,38 |
0,33 |
0,25 |
0,16 |
-0,01 |
-0,11 |
-0,24 |
-0,31 |
-0,35 |
-0,42 |
-0,54 |
Ks=Ms+1 |
1,49 |
1,38 |
1,33 |
1,25 |
1,16 |
0,99 |
0,89 |
0,76 |
0,69 |
0,65 |
0,58 |
0,46 |
Q=Ks*Qср |
391 |
364 |
351 |
330 |
305 |
262 |
235 |
199 |
182 |
171 |
152 |
121 |
Вычисление теоретической кривой обеспеченности средних годовых расходов воды р. Чикой при , и .
В
виду того, что отклонения кривой от
середины пропорциональны
,
все значения
умножаются на
с точностью до тысячных (строка 3 табл.
3).
В
таблице 3 значения
указывают отклонения ординат кривой
от среднего значения ряда, которое
принято равным единице, поэтому при
определении модульных коэффициентов
для построения кривой обеспеченности
прибавляется единица (строка 4:
.
Чтобы
найти расход Q,
соответствующий каждой величине заданной
(вычисляемой) обеспеченности Р,
необходимо значение
для построения кривой обеспеченности
умножить на Qср
= 263 м3/с.
Откладывая
по оси ординат значения, приведённых
средних годовых расходов Q,
из строки 5
(табл. 3), а по оси абсцисс соответствующие
проценты обеспеченности, получают
точки, по которым и проводят кривую,
называемую теоретической кривой
обеспеченности расходов (рис.3), построенную
в простых координатах. Её недостаток в
следующем: она имеет верхнюю и нижнюю
ветви кривой с крутыми подъёмами, где
малым приращениям абсцисс соответствуют
большие приращения ординат, что не
позволяет достаточно точно снимать
значения
.
Кривые обеспеченности представлены на рисунке 3.
Рисунок 3 – Кривые обеспеченности среднемноголетних расходов реки Чикой