
- •Понятие, задачи, предмет, метод, содержание и компетенции дисциплины «Ветеринарная генетика и биостатистика».
- •История развития генетики, вклад в науку отечественных ученых.
- •Методы исследований в генетике, её связь с другими науками.
- •Достижения генетики и её роль в решении практических задач народного хозяйства.
- •Строение клетки животных. Функции органоидов цитоплазмы и ядра.
- •Морфология хромосом. Кариотипы диких и промысловых животных.
- •Образование половых клеток животных. Особенности мужских и женских гамет.
- •Характеристика мейоза.
- •Оплодотворение у животных. Генетическая сущность оплодотворения.
- •2. Молекулярные основы наследственности.
- •2.1 Строение днк и её синтез в клетках.
- •2.2 Строение рнк и ее синтез.
- •2.3 Регуляция генной экспрессии у эукариот. Современные представления о гене как единице наследственности.
- •2.5 Генетический код и его свойства: триплетность, неперекрываемость, вырожденность и универсальность. Коллинеарность гена и кодируемого им белка.
- •2.6 Регуляция активности генов у прокариот. Теория ф. Жакоба и ж. Моно о механизме регуляции действия генов. Адаптивный синтез ферментов. Оперон.
- •2.7 Структурные и регуляторные гены у прокариот. Негативная и позитивная индукция и репрессия генной активности у прокариот.
- •2.8 Общая характеристика онтогенеза. Влияние генов и среды на развитие признаков. Биогенетический закон Мюллера-Геккеля.
- •2.9 Роль генетической информации матери на начальных стадиях развития зиготы.
- •2.10 Критические периоды в онтогенезе животных.
- •2.11 Регуляция синтеза белков в процессе онтогенеза. Пенетрантность и экспрессивность генов.
- •3.1 Особенности гибридологического метода, разработанного Менделем. Генетическая символика
- •3.2 Действия законов Менделя в моногибридных скрещиваниях при полном и неполном доминировании
- •3.3. Действия законов Менделя при дигибридных скрещиваниях
- •3.4 Аллельные гены и аллеломорфные признаки. Анализирующее скрещивание и его применение
- •3.5. Типы взаимодействия неаллельных генов. Характеристика комплементарного взаимодействия и эпистаза.
- •3.6. Полимерное взаимодействие генов и его роль в формировании качественных и количественных признаков
- •3.7. Особенности сцепленного наследования генов
- •3.8 Кроссинговер как основа неполного сцепления генов. Расчет расстояния между генами
- •4.2 Полиплоидия у растений и животных
- •4.3.Гетероплоидия и хромосомные перестройки
- •4.4.Сущность генных мутаций и причины их возникновения
- •4.5 Процесс возникновения мутаций. Репарация мутаций
- •4.6 Понятие о биометрии и основных ее направлений
- •4.8 Показатели, характеризующие степень изменчивости признака у животных
- •4.9 Типы распределения варьирующих признаков (нормальное, биномиальное, асимметрическое, эксцессивное, трансгрессивное)
- •4.10 Определение статистических ошибок и достоверности разности между средними двух выборок
- •4.11 Использование критерия хи-квадрат
- •4.12 Биометрические показатели связи между признаками. Свойства коэффициента корреляции.
- •4.13 Основы регрессионного анализа
- •4.14 Основы дисперсионного анализа
- •4.15 Взаимодействие генотипа и среды. Влияние на коэффициент наследуемости (h2) и повторяемости (rw) генотипических и паратипических факторов.
- •5.1 Использование биотехнологии в ветеренарии
- •5.2 Использование биотехнологии
- •5.3 Строение вирусов и бактерий.
- •5.4 Обмен генетическим материалом у прокариот: конъюгация, трансдукции, трансфрмация.
- •5.5 Биотехнология. Цели и задачи.
- •5.6 Генная инженерия. Получение генов путем синтеза – химического и ферментативного. Ферменты – главные инструменты генетической инженерии (обратная транскриптаза, рестриктирующая эндонуклеаза и др.)
- •5.7 Рекомбинантные днк. Переносчики генетической информации (векторы).
- •5.8 Клеточная инженерия. Культивирование клеток. Гибридизация соматических клеток.
- •5.9 Гибридомная технология получения моноклональных антител.
- •5. Основы иммуногенетики и биотехнологии
- •6. Генетика популяций.
- •6.1 Видообразование. Популяция как единица эволюции.
- •6.3 Особенности популяций и чистых линий. Эффективность отбор в популяциях и чистых линиях.
- •6.4 Структура свободного размножающихся популяций. Формула Харди Вайнберга и ее использование в селекции.
- •6.5 Изменение структуры популяций при отборе
- •6.6 Изменение структуры популяций в процессе мутаций и при миграции животных
- •6.7 Изменение структуры популяций при скрещиваниях и инбридинге
- •6.8 Генетические основы инбридинга и инбредной депрессии. Влияние инбридинга на структуру популяций.
- •6.9 Гетерозис и его генетические причины. Особенности проявления гетерозиса при различных вариантах скрещивания.
Морфология хромосом. Кариотипы диких и промысловых животных.
Хромосомы – это нитевидные тела, видимые внутри ядра клетки после ее окрашивания на соответствующей стадии клеточного деления (метофазе). Хромосомы перед делением клетки состоят из двух хромотид, соединенных между собой в одной точке, называемой центромерой или первичной перетяжкой. В зависимости от места расположения центромеры на хромосомах они могут быть: метацентрическими, субметацентрическими, акроцентрическими и телоцентрическими.
Кариотип- двойной набор хромосом в соматической клетке (клетке тела)- диплоидный 2n.
Число хромосом в кариотипе конкретное для каждого вида животных и растений.
Геном (n)- гаплоидный (одинарный) набор хромосом в половой клетке.
Число хромосом в кариотипе животных:
КРС: 60
Лошадь: 64, Лошадь Пржевальского: 66
Буйвол: 56
Осёл: 62
Овца: 54
Свинья: 38
Коза: 60
Кролик: 44
Норка: наша-30, американская:32
Курица:78
Утка: 80
Гусь: 82
Кошка: 38
Собака: 78
Лиса: 38
Человек: 46
Деление соматических клеток (митоз)
В клеточном цикле клетка переживает 2 процесса:
Интерфаза- состояние покоя, когда клетка интенсивно работает
Митоз- процесс деления.
Жизненный цикл – это время существования клетки от момента ее образования путем деления материнской клетки до собственного деления или естественной гибели. У клеток сложного организма (например, человека) жизненный цикл клетки может быть различным. Высокоспециализированные клетки (эритроциты, нервные клетки, клетки поперечнополосатой мускулатуры) не размножаются. Их жизненный цикл состоит из рождения, выполнения предназначенных функций, гибели (гетерокаталитической интерфазы).
Митоз – это основной тип деления соматических эукариотических клеток. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл.
Образование половых клеток животных. Особенности мужских и женских гамет.
Гаметогенез — это процесс образования половых клеток. Протекает он в половых железах — гонадах (в яичниках у самок и в семенниках у самцов). Гаметогенез в организме женской особи сводится к образованию женских половых клеток (яйцеклеток) и носит название овогенеза. У особей мужского пола возникают мужские половые клетки (сперматозоиды), процесс образования которых называется сперматогенезом
Гаметогенез — это последовательный процесс, которых складывается из нескольких стадий — размножения, роста, созревания клеток. В процесс сперматогенеза включается также стадия формирования, которой нет при овогенезе.
Половые клетки (гаметы)развиваются в половых (генеративных) органах и играют важнейшую роль: обеспечивают передачу наследственной информации от родителей к потомкам. При половом размножении в результате оплодотворения происходит слияние двух половых клеток (мужской и женской) и образование одной клетки — зиготы, последующее деление которой приводит к развитию дочернего организма.
Обычно в ядре клетки содержатся два набора хромосом — по одному от одного и другого родителя — 2п (латинской буквой «п» обозначают одинарный набор хромосом). Такая клетка называется диплоидной(от греч. diploos —«двойной» и eidos —«вид»). Можно предположить, что при слиянии двух ядер во вновь образовавшейся клетке (зиготе) будут находиться уже не два, а четыре набора хромосом, которые при каждом последующем появлении зигот будут снова удваиваться. Представьте себе, какое количество хромосом накопилось бы тогда в одной клетке! Но такого в живой природе не происходит: число хромосом у каждого вида при половом размножении остается постоянным. Связано это с тем, что половые клетки образуются путем особого деления. Благодаря этому в ядро каждой половой клетки попадают не две (2п), а только одна пара хромосом (In), т. е. половина из того, что было в клетке до ее деления. Клетки с одинарным набором хромосом, т. е. содержащие только половину каждой пары хромосом, называются гаплоидными(от греч. haploos—«простой», «одиночный» и eidos —«вид»).
Процесс деления половых клеток, в результате которого в ядре оказывается вдвое меньше хромосом, называют мейозом(греч. meiosis— «уменьшение»). Уменьшение вдвое числа хромосом в ядре (так называемая редукция) происходит при формировании и мужских, и женских половых клеток. При оплодотворении путем слияния половых клеток в ядре зиготы вновь создается двойной набор хромосом (2п).
Следует заметить, что у многих эукариот (микроорганизмы, низшие растения и самцы некоторых видов членистоногих) соматические (греч. soma— «тело») клетки (все клетки тела, исключая половые) имеют гаплоидный набор хромосом. У многих цветковых растений клетки являются полиплоидными, т. е. в них содержится много наборов хромосом. Но у большинства животных, у человека и у высших растений гаплоидными являются только половые клетки. Во всех других клетках тела этих организмов в ядре содержится диплоидный (2п) — двойной набор хромосом.
Мейоз имеет большое значение в живом мире. В процессе мейоза (в отличие от митоза) образуются дочерние клетки, которые содержат в два раза меньше хромосом, чем родительские клетки, но благодаря взаимодействию хромосом отца и матери всегда обладают новыми, неповторимыми комбинациями хромосом. Эти комбинации у потомства выражаются в новых сочетаниях признаков. Появляющееся множество комбинаций хромосом увеличивает возможность вида вырабатывать приспособления к изменяющимся условиям окружающей среды, что очень важно для эволюции.
С помощью мейоза образуются половые клетки с меньшим набором хромосом и с качественно иными генетическими свойствами, чем у родительских клеток.
Половые клетки образуются путём мейоза. У женщин при рождении фиксированный набор яйцеклеток. А сперматозоиды появляются на протяжение всей жизни мужчины.
РАЗЛИЧИЯ:
При овогенезе в результате 2-х смежных делений образуется 1 материнская клетка с гаплоидным набором хромосом большая по размеру и ещё 3 направленных тельца без цитоплазмы ( 3 ядра и оболочка), так как вся цитоплазма уходит в яйцеклетку. 3 тельца потом рассасываются.
Сперматогенез- образование сперматозоидов- после 2-х делений из 1 диплоидной клетки образуются 4 равноценных сперматозоида с мин количеством цитоплазмы.
Сингамия- процесс слияния ядер половых клеток ( м и ж)