
- •1. Предмет, методы и средства аналитической химии. Значение аналитической химии в науке, экономике и других сферах. Основные аналитические проблемы.
- •2. Методы пробоотбора и пробоподготовки основных объектов анализа. Методы отбора и идентификации химических соединений.
- •3. Кислотно-основное равновесие. Основы теории сильных электролитов. Активность, коэффициент активности, ионная сила растворов.
- •5. Равновесия и расчёт рН в растворах кислот, в растворах оснований, в растворах амфолитов.
- •9. Основные методы разделения и концентрирования, их выбор и оценка. Реагенты-осадители общего назначения, групповые, избирательные и специфические.
- •14. Осаждение и соосаждение. Неорганические и органические осадители.
- •16. Количественный химический анализ: цели и задачи, классификация методов.
- •18. Общая схема аналитического определения по методу осаждения. Осаждаемая и гравиметрическая формы, требования к ним. Неорганические и органические осадители, требования к ним.
- •19. Кристаллические и аморфные осадки, механизм их образования. Соосаждение, его роль в химическом анализе. Типы соосаждения, способы уменьшения соосаждения и очистки осадков от соосаждённых примесей.
- •20. Сущность титриметрического анализа. Основные понятия.
- •21. Виды титриметрических определений и их характеристика
- •22. Классификация титриметрических методов по типу реакции. Способы приготовления титрованных растворов.
- •23. Метод кислотно-основного титрования: сущность, общая характеристика, случаи титрования, кривые титрования.
- •Требования к осадительному титрованию
- •Кривая осадительного титрования
- •Виды осадительного титрования
- •28. Общая характеристика физико-химических и физических методов анализа. Современное состояние. Применение для анализа биологических и медицинских объектов.
- •29. Классификация и общая характеристика оптических методов анализа.
- •30. Классификация и общая характеристика электрохимических методов анализа.
- •31.Основные понятия термодинамики
- •32. Первое начало термодинамики.
- •33. Приложения первого начала термодинамики. Закон Гесса. Зависимость теплового эффекта химической реакции от температуры.
- •34. Второе начало термодинамики. Энтропия. Статистическая интерпритация энтропии.
- •35. Третье начало термодинамики. Термодинамические потенциалы.
- •36. Химическое равновесие. Факторы, влияющие на химическое равновесие. Фазовые равновесия.
- •37. Скорость химической реакции. Кинетическое уравнение химической реакции.
- •38. Порядок реакций. Молекулярность элементарных реакций.
- •39. Сложные реакции. Классифиация сложных реакций.
- •2.1.8 Классификация сложных реакций
- •44. Каталитические процессы. Гомогенный и гетерогенный катализ. Автокатализ. Ферментативный катализ.
- •45. Краткие сведения о развитии электрохимии. Окислительно-восстановительные реакции. Роль электрохимических процессов в обработке металлов и других технологиях
- •46. Равновесные явления в растворах электролитов. Основные положения теории электролитической диссоциации с.Аррениуса.
33. Приложения первого начала термодинамики. Закон Гесса. Зависимость теплового эффекта химической реакции от температуры.
Закон Гесса
Как известно, большинство химических реакций сопровождаются выделением (экзотермические реакции) либо поглощением (эндотермические реакции) теплоты. Первое начало термодинамики дает возможность рассчитать тепловой эффект химической реакции при различных условиях её проведения.
Тепловой эффект (теплота) химической реакции – количество теплоты, выделившейся либо поглотившейся в ходе реакции. Тепловой эффект относят, как правило, к числу молей прореагировавшего исходного вещества, стехиометрический коэффициент перед которым максимален.
Например, реакцию окисления водорода в химической термодинамике записывают в виде:
Н2 + 1/2 О2 ––> Н2О
и тепловой эффект рассчитывают на 1 моль водорода.
Тепловые эффекты, сопровождающие протекание химических реакций, являются предметом одного из разделов химической термодинамики – термохимии. Определим некоторые понятия термохимии.
Теплота образования вещества – тепловой эффект реакции образования 1 моля сложного вещества из простых. Теплоты образования простых веществ принимаются равными нулю.
Теплота сгорания вещества – тепловой эффект реакции окисления 1 моля вещества в избытке кислорода до высших устойчивых оксидов.
Теплота растворения – тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Теплота растворения складывается из двух составляющих: теплоты разрушения кристаллической решетки (для твердого вещества) и теплоты сольватации:
Основным законом термохимии является закон Гесса, являющийся частным случаем первого начала термодинамики:
Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
Зависимость теплового эффекта химической реакции от температуры
Тепловой эффект процесса слабо зависит от давления и может существенно изменяться с температурой.
и
.
Эти термодинамические соотношения определяют температурную зависимость теплового эффекта химических реакций и являются дифференциальными выражениеми закона Кирхгофа, одна из формулировок которого гласит:
Температурный коэффициент теплового эффекта равен изменению теплоемкости системы (или разности сумм теплоемкостей продуктов реакции и исходных веществ), происходящему в результате процесса.
34. Второе начало термодинамики. Энтропия. Статистическая интерпритация энтропии.
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры.
Абсолютная температура является единственной функцией состояния термодинамической системы, которая характеризует направление самопроизвольного теплообмена между телами
Энтропия
Теплота q не является функцией состояния, количество теплоты выделившейся или поглотившейся в процессе зависит от самого процесса. Функцией состояния является энтропия обозначается S размерность Дж/К
dS = dQ/T dS 0 - дифференциал энтропии; dQ - дифференциал теплоты; Т - абсолютная температура;
Статистическая интерпритация энтропии.
Классическая термодинамика рассматривает происходящие процессы безотносительно к внутреннему строению системы; поэтому в рамках классической термодинамики показать физический смысл энтропии невозможно.
Для решения этой проблемы Л.Больцманом в теорию теплоты были введены статистические представления. Каждому состоянию системы приписывается термодинамическая вероятность (определяемая как число микросостояний, составляющих данное макросостояние системы), тем большая, чем более неупорядоченным или неопределенным является это состояние. Т.о., энтропия есть функция состояния, описывающая степень неупорядоченности системы. Количественная связь между энтропией S и термодинамической вероятностью W выражается формулой Больцмана:
С точки зрения статистической термодинамики второе начало термодинамики можно сформулировать следующим образом: Система стремится самопроизвольно перейти в состояние с максимальной термодинамической вероятностью .Статистическое толкование второго начала термодинамики придает энтропии конкретный физический смысл меры термодинамической вероятности состояния системы.