Скачиваний:
17
Добавлен:
04.02.2024
Размер:
950.32 Кб
Скачать

КиТЭС.418111.001 ПЗ

Изм.

Лист

№ докум.

Подп.

Дата

Разраб.

Фильтр СВЧ Пояснительная записка

Лит.

Лист

Листов

Провер.

Анисимов В.Г.

У

1

13

Реценз.

УлГТУ Рбд-31

Н. контр.

Утв.

Содержание

Введение 2

1. Обзорная часть 4

2. Конструктивный расчет 8

3. Электрический расчет 15

4. Описание конструкции 17

Заключение 18

Библиографический список 19

Приложения: 1. Чертеж ФНЧ с чебышевской характеристикой в микрополосковом исполнении

Введение

Использование диапазонов сантиметровых волн для создания систем связи, локации, навигации, проведение сложных научных экспериментов позволяет получать результаты, недостижимые в других частотных диапазонах. За последние годы резко возросли уровень и объем требований, предъявляемых к частотным характеристикам устройств, в которых используется диапазон сверхвысоких частот (радиорелейные линии, радиолокаторы, радиотелескопы и др.). Соответственно росту требований усложнился тракт, направляющий энергию от генератора СВЧ колебаний к нагрузке; в настоящее время направляющая система, помимо собственно фидера (волновода, коаксиальной линии и т.п.), включает большое число различных фидерных устройств: фильтрующих, согласующих, ответвляющих, суммирующих и др.

Фильтр - основной элемент многих радиотехнических устройств. Они используются для разделения или сложения сигналов разных частот в многоканальных системах связи или в узлах радиотехнических устройств. Спектр электромагнитных колебаний ограничен, и его отдельные участки необходимо отделить один от другого; фильтры используются для того, чтобы излучения радиопередатчиков были ограничены заданными пределами спектра; и наоборот, другие фильтры используются для защиты приемников от помех, расположенных вне их рабочей полосы частот. Частотные характеристики фильтров должны удовлетворять жестким требованиям; соответствующий этим требованиям расчет систем называют синтезом.

При решении задач синтеза СВЧ устройств использование прямых электродинамических методов чрезвычайно затруднительно. Поэтому на практике используется приближенный компромиссный метод, дающий достаточно хорошие результаты.

Цепь СВЧ с заданной частотной характеристикой строится из заранее выбранных звеньев. Особым типом звена является отрезок однородного фидера. Каскадное соединение таких отрезков с различными волновыми сопротивлениями широко применяется при синтезе.

1. Обзорная часть

Электрические фильтры - четырехполюсники, обладающие избирательными свойствами; они пропускают токи в определенной полосе частот с наибольшим затуханием (полоса пропускания, или прозрачности), а токи с частотами, лежащими вне этой полосы, - с большим затуханием (полоса затухания или задерживания).

В современной радиотехнике под фильтрацией сигналов на фоне помех понимают любое выделение параметров случайных процессов, отражающих полезную информацию (сообщение). Вместе с тем сохраняется и традиционное, более узкое представление о фильтрации, связанное с частотной селекцией сигналов.

Под электрическим фильтром в традиционном смысле понимается цепь, обладающая избирательностью реакции на внешнее воздействие. Характеристики фильтра могут задаваться во временной или частотной областях, в последнем случае требования к фильтру обычно подразумевают определенную избирательность в заданном диапазоне частот.

Целью данной работы является разработка микрополоскового фильтра нижних частот, с Чебышевской характеристикой. В полосе пропускания амплитудно-частотная характеристика никогда не превышает некоторого определенного значения. Существует также две полосы задерживания 0 < w < w1 и w > w2, где значение амплитудно-частотной характеристики никогда не превышает заранее выбранного значения, скажем A2 . Диапазоны частот между полосами задерживания и полосой пропускания, а именно w1 < w < wL и wU < w< w2 образуют соответственно нижнюю и верхнюю переходные области, в которых характеристика является монотонной.

ФИЛЬТРЫ НИЖНИХ ЧАСТОТ

Фильтр нижних частот представляет собой устройство, которое пропускает сигналы низких частот и задерживает сигналы высоких частот. В общем случае определим полосу пропускания как интервал частот 0 < w < wC, переходную область как диапазон частот wc>w1 , переходную область как диапазон частот wc< w <w1 (wc - частота среза). Эти частоты обозначены на рис. 1, на котором приведена реальная амплитудно-частотная характеристика фильтра нижних частот, где в данном случае заштрихованные области представляют собой допустимые отклонения характеристики в полосах пропускания и задерживания.

Рис. 1. Реальная амплитудно-частотная характеристика фильтра нижних частот.

РЕАЛЬНАЯ АМПЛИТУДНО-ЧАСТОТНАЯ ХАРАКТЕРИСТИКА ФИЛЬТРА НИЖНИХ ЧАСТОТ.

Коэффициент усиления фильтра нижних частот представляет собой значение его передаточной функции при s=0 или, что эквивалентно, значение его амплитудно-частотной характеристики на частоте w=0. Следовательно, коэффициент усиления реального фильтра с амплитудночастотной характеристикой. равен A.

Существует много типов фильтров нижних частот, удовлетворяющих данному набору технических требований, таких, как А, A1 , A2 , wc и w1 . Фильтры Баттерворта, Чебышева, инверсные Чебышева и эллиптические образуют четыре наиболее известных класса. Фильтр Баттерворта обладает монотонной характеристикой, подобной характеристике. (Характеристика является монотонно спадающей, если она никогда не, возрастает с увеличением частоты.) Характеристика фильтра Чебышева содержит пульсации (колебания передачи) в полосе пропускания и монотонна в полосе задерживания. Инверсная, характеристика фильтра Чебышева монотонна в полосе пропускания и обладает пульсациями в полосе задерживания. Наконец, характеристика эллиптического фильтра обладает пульсациями, как в полосе пропускания, так и в полосе задерживания.

АЧХ оптимального фильтра нижних частот удовлетворяет обозначенным на рис. 1 условиям для данного порядка n и допустимого отклонения в полосах пропускания и задерживания при минимальной ширине переходной области. Таким образом, если заданы значения A, A1 , A2 , n и wc , то значение частоты w1 минимально. Для полиномиальной характеристики оптимальной является характеристика фильтра Чебышева. Однако в общем случае оптимальным является эллиптический фильтр, характеристики которого значительно лучше характеристик фильтра Чебышева. В нашем случае более предпочтительным будет использование фильтра Баттерворта, т.к. его АЧХ, по сравнению с характеристикой любого полиномиального фильтра n-го порядка, является наиболее плоской.