
- •Тема № 1. Молекулярно-генетический уровень организации наследственного материала.
- •Тема № 2. Хромосомный и геномный уровни организации наследственного материала.
- •Тема № 3. Экспрессия генов у про- и эукариот.
- •Тема № 4. Клеточный уровень организации живого.
- •1. Органеллы общего назначения (встречаются во всех видах клеток):
- •Тема № 5. Обменные процессы в жизненном цикле клетки.
- •1. Постмитотический или пресинтетический период g1.
- •2. Синтетический период s:
- •3. Постсинтетический, или премитотический период g2:
- •Тема № 6. Генетика как наука. Закономерности наследования признаков.
- •Решение ситуационных задач. Задачи на моногибридное скрещивание.
- •Задача на анализирующее скрещивание.
- •Задача на дигибридное скрещивание.
- •Задача на полигибридное скрещивание.
- •Задача на промежуточное наследование.
- •Тема № 7. Сцепленное наследование признаков.
- •Тема № 8. Биология и генетика пола.
- •Тема № 9. Изменчивость организмов.
- •Тема № 10. Методы антропогенетики. Наследственные болезни человека.
- •Тема № 11. Размножение организмов.
- •Тема № 12. Основы онтогенеза.
- •Тема № 13. Гомеостаз, механизмы его регуляции.
- •«Соматическом стрессе»
- •Тема № 14. Генетика популяций.
- •Тема № 15. Экологические аспекты паразитизма. Введение в паразитологию.
- •Тема № 16. Медицинская протозоология.
- •Тема № 17. Медицинская гельминтология. Тип плоские черви.
- •Тема № 18. Медицинская гельминтология. Тип круглые черви.
- •1. Прямое развитие:
- •2. Непрямое развитие:
- •Тема № 19. Медицинская арахноэнтомология.
- •Литература
Тема № 4. Клеточный уровень организации живого.
Клетка – элементарная генетическая и структурно-функциональная единица живого.
Раздел биологии, занимающийся изучением структурной и функциональной организации клетки как единицы живого, получил название цитологии (от греч. cytos – клетка, полость, logos – наука). Открытие клетки связано с именами великих ученых-микроскопистов – Р. Гука, M. Мальпиги, Н. Грю, описавших ячеистое строение многих растительных объектов, а также с именем Антони Ван Левенгука, впервые наблюдавшего реальные клетки животных.
В 1939 году немецкий зоолог Т. Шванн опубликовал труд "Микроскопические исследования о соответствии в структуре и росте животных и растений", в котором были заложены основы клеточной теории. В этой работе Т. Шванн пришел к двум выводам:
1) клетка – главная структурная единица всех растительных и животных организмов;
2) процесс образования клеток обусловливает рост, развитие и дифференцировку всех растительных и животных тканей и организмов.
Дальнейшее развитие клеточной теории связано с именем немецкого ученого Рудольфа Вирхова, который в 1858 году опубликовал свой труд «Целлюлярная патология». В этой работе Р. Вирхов дополнил клеточную теорию третьим выводом: «Omnis cellula e cellula» каждая клетка из клетки. Этот вывод блестяще подтвердился дальнейшим развитием биологии. В настоящее время не известно иных способов появления клеток помимо их деления. В своей работе Р. Вирхов впервые подошел к объяснению патологического процесса, показав его связь в организме с морфологическими структурами, с определенными изменениями в структуре и функции клеток. Он является основоположником патологической анатомии.
Однако, ряд выводов Р. Вирхова оказались ошибочными и закономерно встретили возражения со стороны современников. По Р. Вирхову патологический процесс в организме представляет собой сумму нарушений жизнедеятельности отдельных клеток, это локальный процесс. Р. Вирхов и его последователи не видели также качественных отличий между частью и целым, рассматривая организм вне его исторического развития и условий существования. Эту идею Р. Вирхова обоснованно критиковали И.М. Сеченов, C.П. Боткин, И.П. Павлов, которые показали, что организм – единое целое и интеграция его частей осуществляется прежде всего ЦНС.
Благодаря исследованиям Т. Шванна, М. Шлейдена, Р. Вирхова, Т. Моргана, С.Г. Навашина, Н.К. Кольцова, Д.Н. Насонова и др., клетку рассматривают как наименьшую элементарную единицу живого, которой свойственны такие признаки, как метаболизм, воспроизведение, реактивность и изменчивость.
Клеточная теория, основные этапы ее развития. Современное состояние клеточной теории.
Современная клеточная теория включает следующие положения:
1. Клетка – основная структурно-функциональная и генетическая единица живого.
2. Клетки одно- и многоклеточных организмов сходны по строению, химическому составу и проявлению жизнедеятельности.
3. Размножение клеток осуществляется путем деления исходной (материнской) клетки.
4. Клетки многоклеточных организмов специализируются по функциям и образуют ткани и органы.
5. Единое целое организма и интеграция его частей осуществляется, прежде всего, ЦНС.
6. В основе непрерывности, единства и разнообразия органического мира лежат обмен веществ, размножение, наследственность, изменчивость и раздражимость клеток.
Значение клеточной теории:
- доказательство морфологической основы единства живой природы;
- общебиологическое объяснение живой природы;
- доказательство эволюционных процессов.
Доклеточные формы живого.
Жизненные формы организмов:
Доклеточные – царство вирусов.
Клеточные: прокариоты – царства бактерий и цианобактерий,
эукариоты – царства растений, животных и грибов.
Большинство живых организмов состоит из клеток. Однако имеются неклеточные формы жизни – вирусы. С возникновением клетки живые системы приобретают способность к самостоятельному обмену веществ и размножению. Усложнение их организации связано с появлением клеточной, а затем ядерной мембраны и увеличением молекулярной массы ДНК.
Особенности строения прокариотической клетки.
Прокариоты – одноклеточные доядерные организмы. Наследственный аппарат представлен одной молекулой ДНК кольцевой формы. ДНК вместе с белками формирует в бактериальной клетке особый комплекс – нуклеоид. Прокариоты являются гаплоидами. Молекулярная масса ДНК соответствует приблизительно 2000 структурных генов. Клетка ограничена двойной плазматической мембраной (наружной и внутренней). Поверх мембраны образуется клеточная стенка. Она состоит из углевода муреина, образующего жесткую решетку. В цитоплазме отсутствуют органеллы мембранного строения. Их функцию выполняют впячивания внутренней мембраны – мезосомы. В цитоплазме имеются рибосомы. Бактерии могут содержаться мелкие молекулы ДНК (плазмиды). Фотосинтезирующие бактерии имеют фотомембраны. Запасные питательные вещества представлены углеводами.
Структурные компоненты клеток эукариот: плазматическая мембрана, цитоплазма, ядро. Их строение. Классификация органоидов и включений.
Эукариотические клетки имеют обособленное ядро, наружную биологическую мембрану – плазмолемму и цитоплазму с органеллами и включениями.
Плазмолемма отделяет содержимое клетки от внешней среды и регулирует движение ионов и макромолекул в клетку и из нее. Плазмолемма имеет жидкостно-мозаичное строение (модель Сингера). Она состоит из двойного фосфолипидного слоя, белков и полисахаридов. Молекулы фосфолипидов представлены неполярными гидрофобными концами и полярными гидрофильными головками, обращенными к внешней среде. Белки расположены мозаично: поверхностные, погруженные и пронизывающие.
На поверхности мембраны находятся олигосахаридные цепи, состоящие из моносахаридных остатков. Их функции:
распознавание внешних сигналов;
контакт клеток и образование тканей;
иммунный ответ.
Клетки растений имеют целлюлозную, а грибов – хитиновую оболочки поверх плазмолеммы. На наружной поверхности плазмолеммы животных клеток находится полисахаридный слой – гликокаликс.
Химический состав клеточной мембраны следующий:
1) белки – 55% (из них до 200 ферментов);
2) липиды – 35%;
3) углеводы – 5-10% (в соединении с простыми или сложными белками).
Функции липидов мембран: структурная, барьерная.
Функции белков мембран: структурная, ферментативная, рецепторная, транспортная.
Функция гликопротеидов – рецепторная.
Свойства мембран: пластичность, полупроницаемость, динамичность.
Функции мембран:
1) структурная (входят в состав большинства органоидов);
2) барьерная (поддерживает постоянство химического состава) и защитная;
3) регуляторная (регуляция обменных процессов);
4) рецепторная;
5) транспортная.
Через плазмолемму осуществляется транспорт веществ в клетку. Транспорт бывает пассивный и активный.
1. Пассивный транспорт происходит без затрат энергии, по градиенту концентрации. Это может быть: диффузия газов, осмотическое движение воды, облегченная диффузия веществ (аминокислот, сахаров, жирных кислот) посредством белков-переносчиков.
2. Активный транспорт идет против градиента концентрации, с затратой энергии. Для него необходимо наличие специальных ионных каналов, ферментов и АТФ. Так работает натрий-калиевый насос. Концентрация калия в клетке выше, чем в околоклеточном пространстве, и, тем не менее, ионы калия поступают в клетку, а ионы натрия выводятся наружу. Ионы натрия формируют на поверхности мембраны положительный заряд, внутри клетки заряд отрицательный по отношению к среде. На каждые 2 поступающие иона К+ из клетки выводится 3 иона Na+. Заряд на мембране обеспечивает передачу нервного импульса, всасывание питательных веществ ворсинками кишечника, адсорбцию в почечных канальцах.
Mg2+/Ca2+ насос обеспечивает мышечные сокращения.
Крупномолекулярные соединения белков, нуклеиновых кислот, полисахаридов проникают внутрь клетки путем эндоцитоза. Различают два вида эндоцитоза: фагоцитоз и пиноцитоз. Фагоцитоз – захватывание мембранной твердых частиц. При этом внутри клетки при участии лизосом образуется пищеварительная вакуоль. Пиноцитоз – поступление жидкостей в клетку.
Выделение из клетки веществ, заключенных в мембрану, называется экзоцитозом.
Поступившие в клетку вещества могут использоваться:
1) для синтеза веществ, необходимых самой клетке (анаболическая система);
2) как источник энергии (катаболическая система).
Цитоплазма – живое содержимое клетки без ядра. В цитоплазме различают гиалоплазму, органеллы и включения.
Гиалоплазма является основным веществом клетки, с которым связаны коллоидные свойства цитоплазмы, ее вязкость, эластичность, сократимость и внутреннее движение. Гиалоплазма состоит из двух фаз: жидкой и твердой. Жидкая фаза представлена коллоидным раствором белков, углеводов, нуклеотидов и ионов неорганических веществ. Твердая фаза представлена микротрабекулярной системой, микротрубочками и микрофиламентами (фибриллы), которые образуют цитоскелет клетки.
Органеллы – это специализированные постоянные компоненты цитоплазмы, обладающие определенным строением и выполняющие ту или иную функцию в жизнедеятельности клетки. Органеллы подразделяют на две группы: общего и специального назначения.