
- •1. Основные понятия химической термодинамики.
- •2. Первое начало термодинамики: формулировки, аналитическое выражение. Первое начало термодинамики в биологических системах.
- •3. Закон Гесса. Следствия из закона Гесса.
- •4. Закон Кирхгоффа.
- •5. Основные термодинамические процессы.
- •6. Калориметрические измерения.
- •7. Второе начало термодинамики: формулировки, математическое выражение. Второе начало термодинамики в живых организмах.
- •8. Энтропия, как функция состояния системы. Статистическая интерпретация энтропии.
- •9. Термодинамические потенциалы системы.
- •10. Тепловая теорема Нернста.
- •11. Абсолютная энтропия. Уравнение Больцмана.
- •12. Термодинамика растворов. Закон Рауля. Отклонения от закона Рауля.
- •13. Термодинамика растворов. Образование растворов, растворимость: газ/газ.
- •14. Термодинамика растворов. Образование растворов, растворимость: газ/жидкость.
- •15. Термодинамика растворов. Первый закон Коновалова, термодинамический вывод.
- •16. Термодинамика растворов. Второй закон Коновалова, термодинамический вывод.
- •17. Термодинамика растворов. Перегонка. Диаграмма перегонки жидкостей.
- •18. Термодинамика растворов. Криоскопическая и эбуллиоскопические постоянные.
- •19. Термодинамика растворов. Теория электролитической диссоциации.
- •20. Термодинамика растворов. Изотонический коэффициент.
- •21. Термодинамика растворов. Механизм разделения жидкостей методом перегонки.
- •22. Термодинамика растворов. Осмотическое давление разбавленных растворов.
- •23. Термодинамика растворов. Понятие активности растворенного вещества.
- •24. Химическое равновесие. Константа химического равновесия.
- •25. Химическое равновесие. Условия химического равновесия.
- •26. Химическое равновесие. Химический потенциал.
- •27. Химическое равновесие. Изотерма химической реакции.
- •28. Химическое равновесие. Влияние внешних условий на химическое равновесие: давление, концентрация, температура.
- •29. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния воды.
- •30. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния серы.
- •31. Фазовые равновесия. Уравнение Клаузиуса-Клайперона.
- •32. Буферные растворы. Механизм действия буферных растворов.
- •33. Буферные растворы. Буферная емкость.
- •34. Буферные растворы. Буферные системы организма.
- •35. Буферные растворы. Уравнение Гендерсона – Гассельбаха для определения рН и рОн протолитических буферных растворов.
- •36. Буферные растворы. Кислотно-основное равновесие. Основные причины и типы нарушений кислотно-основного равновесия организма и возможности коррекции.
- •37. Скорость химической реакции. Понятие о периоде полупревращения.
- •38. Скорость химической реакции. Энергия активации. Уравнение Аррениуса.
- •39. Скорость химической реакции. Кинетическое уравнение химической реакции.
- •40. Скорость химической реакции. Порядок реакции. Методы определения порядка реакции.
- •41. Скорость химической реакции. Влияние температуры на скорость реакции.
- •42. Каталитические процессы. Основные характеристики катализатора. Факторы, влияющие на снижение активности катализатора.
- •47. Каталитические процессы. Теория мультиплетов.
- •48. Электрохимия. Гальванический элемент. Эдс Гальванического элемента.
- •49. Электрохимия. Электродный потенциал. Уравнение Нернста.
- •50. Электрохимия. Проводники I и II рода.
- •51. Электрохимия. Электроды сравнения.
- •52. Дисперсные системы. Классификация дисперсных систем.
- •53. Дисперсные системы. Суспензии.
- •54. Дисперсные системы. Эмульсии.
- •55. Дисперсные системы. Пены.
- •56. Дисперсные системы. Аэрозоли.
- •57. Дисперсные системы. Порошки.
- •58. Дисперсные системы. Диализация коллоидных растворов.
- •59. Дисперсные системы. Структурная единица лиофобных коллоидов.
- •60. Термодинамический анализ адсорбции. Теория мономолекулярной адсорбции Ленгмюра.
- •61. Термодинамический анализ адсорбции. Теория полимолекулярной адсорбции Поляни.
- •62. Термодинамический анализ адсорбции. Уравнение Фрейндлиха.
- •63. Термодинамический анализ адсорбции. Адсорбция из растворов электролитов.
- •64. Термодинамический анализ адсорбции. Ионная адсорбция. Факторы, влияющие на ионную адсорбцию.
- •65. Термодинамический анализ адсорбции. Изотерма адсорбции.
- •66. Термодинамика поверхностного слоя. Поверхностное натяжение.
- •67. Термодинамика поверхностного слоя. Изотермы поверхностного натяжения.
- •68. Термодинамика поверхностного слоя. Пав и пиав: строение молекул и их свойства.
- •69. Термодинамика поверхностного слоя. Изотерма адсорбции Гиббса. Правило Дюкло-Траубе.
- •70. Термодинамика поверхностного слоя. Методы определения поверхностного натяжения.
- •71. Термодинамика поверхностного слоя. Поверхностная энергия.
- •72. Процесс диспергирования. Самопроизвольное и несамопроизвольное диспергирование.
- •73. Адгезия и когезия.
- •74. Критерий Ребиндера – Щукина, границы его применения.
- •75. Пептизация, виды пептизации.
- •77. Влияние электролита на процесс мицелообразования.
- •78. Молекулярно-кинетические свойства коллоидных систем, их характеристика.
- •79. Броуновское движение. Факторы, влияющие на броуновское движение. Уравнение Эйнштейна – Смолуховского.
- •80. Диффузия. Уравнение Фика. Факторы, влияющие на диффузию.
- •81. Осмос. Определение величины осмотического давления.
- •82. Седиментация. Определение скорости седиментации.
- •83. Седиментационная и кинетическая устойчивость коллоидной системы.
- •84. Оптические свойства коллоидных систем. Эффект Тиндаля. Уравнение Рэлея.
- •85. Оптические свойства коллоидных систем. Нефелометрия и турбидиметрия.
- •86. Электро-кинетические явления в коллоидных системах, их характеристика.
- •87. Электрофорез. Количественные характеристики.
- •88. Электроосмос. Факторы, влияющие на электроосмос.
- •89. Эффект седиментации. Потенциал седиментации.
- •90. Потенциал протекания и потенциал течения: сходство и различие.
- •91. Двойной электрический слой. Основные теории образования дэс.
- •92. Устойчивость коллоидных систем. Виды устойчивости.
- •93. Коагуляция, основные стадии. Порог коагуляции.
- •94. Коагуляция под действием электролита. Правило Шульце-Гарди.
- •95. Методы очистки коллоидных систем.
- •96. Высокомолекулярные соединения. Понятие о растворах вмс. Классификация вмс.
- •97. Высокомолекулярные соединения. Свойства растворов вмс.
- •98. Вязкость, основные характеристики. Факторы, влияющие на вязкость. Уравнение Эйнштейна.
- •99. Вязкость крови.
- •100. Набухание. Механизм процесса. Факторы, влияющие на процесс.
- •101. Студни и гели, основные характеристики.
- •102. Застудневание, механизм процесса.
- •103. Тиксотропия, основные характеристики.
- •104. Механизм образования заряда на вмс.
- •105. Устойчивость растворов вмс. Высаливание и коацервация.
13. Термодинамика растворов. Образование растворов, растворимость: газ/газ.
Образование раствора является сложным физико-химическим процессом. Процесс растворения всегда сопровождается увеличением энтропии системы; при образовании растворов часто имеет место выделение либо поглощение теплоты. Теория растворов должна объяснять все эти явления. Исторически сложились два подхода к образованию растворов – физическая теория и химическая.
Физическая теория растворов рассматривает процесс растворения как распределение частиц растворенного вещества между частицами растворителя, предполагая отсутствие какого-либо взаимодействия между ними. Единственной движущей силой такого процесса является увеличение энтропии системы ∆S; какие-либо тепловые или объемные эффекты при растворении отсутствуют (∆Н = 0, ∆V = 0; такие растворы принято называть идеальными).
Химическая теория рассматривает процесс растворения как образование смеси неустойчивых химических соединений переменного состава, сопровождающееся тепловым эффектом и изменением объема системы (контракцией), что часто приводит к резкому изменению свойств растворенного вещества (так, растворение бесцветного сульфата меди СuSО4 в воде приводит к образованию окрашенного раствора, из которого выделяется не СuSО4, а голубой кристаллогидрат СuSО4·5Н2О).
Современная термодинамика растворов основана на синтезе этих двух подходов. В общем случае при растворении происходит изменение свойств и растворителя, и растворенного вещества, что обусловлено взаимодействием частиц между собой по различным типам взаимодействия: Ван-дер-Ваальсового (во всех случаях), ион-дипольного (в растворах электролитов в полярных растворителях), специфических взаимодействий (образование водородных или донорно-акцепторных связей).
Растворимость газов в газах
Газообразное состояние вещества характеризуется слабым взаимодействием между частицами и большими расстояниями между ними. Поэтому газы смешиваются в любых соотношениях (при очень высоких давлениях, когда плотность газов приближается к плотности жидкостей, может наблюдаться ограниченная растворимость).
Газовые смеси описываются законом Дальтона: Общее давление газовой смеси равно сумме парциальных давлений всех входящих в неё газов.
14. Термодинамика растворов. Образование растворов, растворимость: газ/жидкость.
Растворимость газов в жидкостях зависит от ряда факторов: природы газа и жидкости, давления, температуры, концентрации растворенных в жидкости веществ (особенно сильно влияет на растворимость газов концентрация электролитов). Наибольшее влияние на растворимость газов в жидкостях оказывает природа веществ. Аномально высокая растворимость газов в жидкостях обычно обусловливается их специфическим взаимодействием с растворителем – образованием химического соединения (для аммиака) или диссоциацией в растворе на ионы (для хлороводорода). Газы, молекулы которых неполярны, растворяются, как правило, лучше в неполярных жидкостях – и наоборот.
Зависимость растворимости газов от давления выражается законом Генри - Дальтона: Растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью. С = kP, k – коэффициент пропорциональности, зависящий от природы газа.
Закон Генри - Дальтона справедлив только для разбавленных растворов при малых давлениях, когда газы можно считать идеальными. Газы, способные к специфическому взаимодействию с растворителем, данному закону не подчиняются.