- •1. Основные понятия химической термодинамики.
- •2. Первое начало термодинамики: формулировки, аналитическое выражение. Первое начало термодинамики в биологических системах.
- •3. Закон Гесса. Следствия из закона Гесса.
- •4. Закон Кирхгоффа.
- •5. Основные термодинамические процессы.
- •6. Калориметрические измерения.
- •7. Второе начало термодинамики: формулировки, математическое выражение. Второе начало термодинамики в живых организмах.
- •8. Энтропия, как функция состояния системы. Статистическая интерпретация энтропии.
- •9. Термодинамические потенциалы системы.
- •10. Тепловая теорема Нернста.
- •11. Абсолютная энтропия. Уравнение Больцмана.
- •12. Термодинамика растворов. Закон Рауля. Отклонения от закона Рауля.
- •13. Термодинамика растворов. Образование растворов, растворимость: газ/газ.
- •14. Термодинамика растворов. Образование растворов, растворимость: газ/жидкость.
- •15. Термодинамика растворов. Первый закон Коновалова, термодинамический вывод.
- •16. Термодинамика растворов. Второй закон Коновалова, термодинамический вывод.
- •17. Термодинамика растворов. Перегонка. Диаграмма перегонки жидкостей.
- •18. Термодинамика растворов. Криоскопическая и эбуллиоскопические постоянные.
- •19. Термодинамика растворов. Теория электролитической диссоциации.
- •20. Термодинамика растворов. Изотонический коэффициент.
- •21. Термодинамика растворов. Механизм разделения жидкостей методом перегонки.
- •22. Термодинамика растворов. Осмотическое давление разбавленных растворов.
- •23. Термодинамика растворов. Понятие активности растворенного вещества.
- •24. Химическое равновесие. Константа химического равновесия.
- •25. Химическое равновесие. Условия химического равновесия.
- •26. Химическое равновесие. Химический потенциал.
- •27. Химическое равновесие. Изотерма химической реакции.
- •28. Химическое равновесие. Влияние внешних условий на химическое равновесие: давление, концентрация, температура.
- •29. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния воды.
- •30. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния серы.
- •31. Фазовые равновесия. Уравнение Клаузиуса-Клайперона.
- •32. Буферные растворы. Механизм действия буферных растворов.
- •33. Буферные растворы. Буферная емкость.
- •34. Буферные растворы. Буферные системы организма.
- •35. Буферные растворы. Уравнение Гендерсона – Гассельбаха для определения рН и рОн протолитических буферных растворов.
- •36. Буферные растворы. Кислотно-основное равновесие. Основные причины и типы нарушений кислотно-основного равновесия организма и возможности коррекции.
- •37. Скорость химической реакции. Понятие о периоде полупревращения.
- •38. Скорость химической реакции. Энергия активации. Уравнение Аррениуса.
- •39. Скорость химической реакции. Кинетическое уравнение химической реакции.
- •40. Скорость химической реакции. Порядок реакции. Методы определения порядка реакции.
- •41. Скорость химической реакции. Влияние температуры на скорость реакции.
- •42. Каталитические процессы. Основные характеристики катализатора. Факторы, влияющие на снижение активности катализатора.
- •47. Каталитические процессы. Теория мультиплетов.
- •48. Электрохимия. Гальванический элемент. Эдс Гальванического элемента.
- •49. Электрохимия. Электродный потенциал. Уравнение Нернста.
- •50. Электрохимия. Проводники I и II рода.
- •51. Электрохимия. Электроды сравнения.
- •52. Дисперсные системы. Классификация дисперсных систем.
- •53. Дисперсные системы. Суспензии.
- •54. Дисперсные системы. Эмульсии.
- •55. Дисперсные системы. Пены.
- •56. Дисперсные системы. Аэрозоли.
- •57. Дисперсные системы. Порошки.
- •58. Дисперсные системы. Диализация коллоидных растворов.
- •59. Дисперсные системы. Структурная единица лиофобных коллоидов.
- •60. Термодинамический анализ адсорбции. Теория мономолекулярной адсорбции Ленгмюра.
- •61. Термодинамический анализ адсорбции. Теория полимолекулярной адсорбции Поляни.
- •62. Термодинамический анализ адсорбции. Уравнение Фрейндлиха.
- •63. Термодинамический анализ адсорбции. Адсорбция из растворов электролитов.
- •64. Термодинамический анализ адсорбции. Ионная адсорбция. Факторы, влияющие на ионную адсорбцию.
- •65. Термодинамический анализ адсорбции. Изотерма адсорбции.
- •66. Термодинамика поверхностного слоя. Поверхностное натяжение.
- •67. Термодинамика поверхностного слоя. Изотермы поверхностного натяжения.
- •68. Термодинамика поверхностного слоя. Пав и пиав: строение молекул и их свойства.
- •69. Термодинамика поверхностного слоя. Изотерма адсорбции Гиббса. Правило Дюкло-Траубе.
- •70. Термодинамика поверхностного слоя. Методы определения поверхностного натяжения.
- •71. Термодинамика поверхностного слоя. Поверхностная энергия.
- •72. Процесс диспергирования. Самопроизвольное и несамопроизвольное диспергирование.
- •73. Адгезия и когезия.
- •74. Критерий Ребиндера – Щукина, границы его применения.
- •75. Пептизация, виды пептизации.
- •77. Влияние электролита на процесс мицелообразования.
- •78. Молекулярно-кинетические свойства коллоидных систем, их характеристика.
- •79. Броуновское движение. Факторы, влияющие на броуновское движение. Уравнение Эйнштейна – Смолуховского.
- •80. Диффузия. Уравнение Фика. Факторы, влияющие на диффузию.
- •81. Осмос. Определение величины осмотического давления.
- •82. Седиментация. Определение скорости седиментации.
- •83. Седиментационная и кинетическая устойчивость коллоидной системы.
- •84. Оптические свойства коллоидных систем. Эффект Тиндаля. Уравнение Рэлея.
- •85. Оптические свойства коллоидных систем. Нефелометрия и турбидиметрия.
- •86. Электро-кинетические явления в коллоидных системах, их характеристика.
- •87. Электрофорез. Количественные характеристики.
- •88. Электроосмос. Факторы, влияющие на электроосмос.
- •89. Эффект седиментации. Потенциал седиментации.
- •90. Потенциал протекания и потенциал течения: сходство и различие.
- •91. Двойной электрический слой. Основные теории образования дэс.
- •92. Устойчивость коллоидных систем. Виды устойчивости.
- •93. Коагуляция, основные стадии. Порог коагуляции.
- •94. Коагуляция под действием электролита. Правило Шульце-Гарди.
- •95. Методы очистки коллоидных систем.
- •96. Высокомолекулярные соединения. Понятие о растворах вмс. Классификация вмс.
- •97. Высокомолекулярные соединения. Свойства растворов вмс.
- •98. Вязкость, основные характеристики. Факторы, влияющие на вязкость. Уравнение Эйнштейна.
- •99. Вязкость крови.
- •100. Набухание. Механизм процесса. Факторы, влияющие на процесс.
- •101. Студни и гели, основные характеристики.
- •102. Застудневание, механизм процесса.
- •103. Тиксотропия, основные характеристики.
- •104. Механизм образования заряда на вмс.
- •105. Устойчивость растворов вмс. Высаливание и коацервация.
61. Термодинамический анализ адсорбции. Теория полимолекулярной адсорбции Поляни.
Адсорбция может вызываться физическими и химическими силами и соответственно подразделяется на физическую и химическую адсорбцию.
Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 – 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.
Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40-120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.
При постоянной температуре количество адсорбированного вещества зависит только от равновесных давления либо концентрации адсорбата; уравнение, связывающее эти величины, называется изотермой адсорбции.
Теория полимолекулярной адсорбции Поляни.
На практике часто (особенно при адсорбции паров) встречаются т.н. S-образные изотермы адсорбции, форма которых свидетельствует о возможном, начиная с некоторой величины давления, взаимодействии адсорбированных молекул с адсорбатом.
Для описания таких изотерм адсорбции М. Поляни предложил теорию полимолекулярной адсорбции, основанную на следующих основных положениях:
1. Адсорбция вызвана чисто физическими силами.
2. Поверхность адсорбента однородна, т.е. на ней нет активных центров; адсорбционные силы образуют непрерывное силовое поле вблизи поверхности адсорбента.
3. Адсорбционные силы действуют на расстоянии, большем размера молекулы адсорбата. Иначе говоря, у поверхности адсорбента существует некоторый адсорбционный объем, который при адсорбции заполняется молекулами адсорбата.
4. Притяжение молекулы адсорбата поверхностью адсорбента не зависит от наличия в адсорбционном объеме других молекул, вследствие чего возможна полимолекулярная адсорбция.
5. Адсорбционные силы не зависят от температуры и, следовательно, с изменением температуры адсорбционный объем не меняется.
62. Термодинамический анализ адсорбции. Уравнение Фрейндлиха.
Адсорбция может вызываться физическими и химическими силами и соответственно подразделяется на физическую и химическую адсорбцию.
Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 – 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.
Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40-120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.
При постоянной температуре количество адсорбированного вещества зависит только от равновесных давления либо концентрации адсорбата; уравнение, связывающее эти величины, называется изотермой адсорбции.
Уравнение Фрейндлиха.
Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г.Фрейндлих предположил, что число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m) должна быть пропорциональна равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенной в некоторую степень, которая всегда меньше единицы.
