- •1. Основные понятия химической термодинамики.
- •2. Первое начало термодинамики: формулировки, аналитическое выражение. Первое начало термодинамики в биологических системах.
- •3. Закон Гесса. Следствия из закона Гесса.
- •4. Закон Кирхгоффа.
- •5. Основные термодинамические процессы.
- •6. Калориметрические измерения.
- •7. Второе начало термодинамики: формулировки, математическое выражение. Второе начало термодинамики в живых организмах.
- •8. Энтропия, как функция состояния системы. Статистическая интерпретация энтропии.
- •9. Термодинамические потенциалы системы.
- •10. Тепловая теорема Нернста.
- •11. Абсолютная энтропия. Уравнение Больцмана.
- •12. Термодинамика растворов. Закон Рауля. Отклонения от закона Рауля.
- •13. Термодинамика растворов. Образование растворов, растворимость: газ/газ.
- •14. Термодинамика растворов. Образование растворов, растворимость: газ/жидкость.
- •15. Термодинамика растворов. Первый закон Коновалова, термодинамический вывод.
- •16. Термодинамика растворов. Второй закон Коновалова, термодинамический вывод.
- •17. Термодинамика растворов. Перегонка. Диаграмма перегонки жидкостей.
- •18. Термодинамика растворов. Криоскопическая и эбуллиоскопические постоянные.
- •19. Термодинамика растворов. Теория электролитической диссоциации.
- •20. Термодинамика растворов. Изотонический коэффициент.
- •21. Термодинамика растворов. Механизм разделения жидкостей методом перегонки.
- •22. Термодинамика растворов. Осмотическое давление разбавленных растворов.
- •23. Термодинамика растворов. Понятие активности растворенного вещества.
- •24. Химическое равновесие. Константа химического равновесия.
- •25. Химическое равновесие. Условия химического равновесия.
- •26. Химическое равновесие. Химический потенциал.
- •27. Химическое равновесие. Изотерма химической реакции.
- •28. Химическое равновесие. Влияние внешних условий на химическое равновесие: давление, концентрация, температура.
- •29. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния воды.
- •30. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния серы.
- •31. Фазовые равновесия. Уравнение Клаузиуса-Клайперона.
- •32. Буферные растворы. Механизм действия буферных растворов.
- •33. Буферные растворы. Буферная емкость.
- •34. Буферные растворы. Буферные системы организма.
- •35. Буферные растворы. Уравнение Гендерсона – Гассельбаха для определения рН и рОн протолитических буферных растворов.
- •36. Буферные растворы. Кислотно-основное равновесие. Основные причины и типы нарушений кислотно-основного равновесия организма и возможности коррекции.
- •37. Скорость химической реакции. Понятие о периоде полупревращения.
- •38. Скорость химической реакции. Энергия активации. Уравнение Аррениуса.
- •39. Скорость химической реакции. Кинетическое уравнение химической реакции.
- •40. Скорость химической реакции. Порядок реакции. Методы определения порядка реакции.
- •41. Скорость химической реакции. Влияние температуры на скорость реакции.
- •42. Каталитические процессы. Основные характеристики катализатора. Факторы, влияющие на снижение активности катализатора.
- •47. Каталитические процессы. Теория мультиплетов.
- •48. Электрохимия. Гальванический элемент. Эдс Гальванического элемента.
- •49. Электрохимия. Электродный потенциал. Уравнение Нернста.
- •50. Электрохимия. Проводники I и II рода.
- •51. Электрохимия. Электроды сравнения.
- •52. Дисперсные системы. Классификация дисперсных систем.
- •53. Дисперсные системы. Суспензии.
- •54. Дисперсные системы. Эмульсии.
- •55. Дисперсные системы. Пены.
- •56. Дисперсные системы. Аэрозоли.
- •57. Дисперсные системы. Порошки.
- •58. Дисперсные системы. Диализация коллоидных растворов.
- •59. Дисперсные системы. Структурная единица лиофобных коллоидов.
- •60. Термодинамический анализ адсорбции. Теория мономолекулярной адсорбции Ленгмюра.
- •61. Термодинамический анализ адсорбции. Теория полимолекулярной адсорбции Поляни.
- •62. Термодинамический анализ адсорбции. Уравнение Фрейндлиха.
- •63. Термодинамический анализ адсорбции. Адсорбция из растворов электролитов.
- •64. Термодинамический анализ адсорбции. Ионная адсорбция. Факторы, влияющие на ионную адсорбцию.
- •65. Термодинамический анализ адсорбции. Изотерма адсорбции.
- •66. Термодинамика поверхностного слоя. Поверхностное натяжение.
- •67. Термодинамика поверхностного слоя. Изотермы поверхностного натяжения.
- •68. Термодинамика поверхностного слоя. Пав и пиав: строение молекул и их свойства.
- •69. Термодинамика поверхностного слоя. Изотерма адсорбции Гиббса. Правило Дюкло-Траубе.
- •70. Термодинамика поверхностного слоя. Методы определения поверхностного натяжения.
- •71. Термодинамика поверхностного слоя. Поверхностная энергия.
- •72. Процесс диспергирования. Самопроизвольное и несамопроизвольное диспергирование.
- •73. Адгезия и когезия.
- •74. Критерий Ребиндера – Щукина, границы его применения.
- •75. Пептизация, виды пептизации.
- •77. Влияние электролита на процесс мицелообразования.
- •78. Молекулярно-кинетические свойства коллоидных систем, их характеристика.
- •79. Броуновское движение. Факторы, влияющие на броуновское движение. Уравнение Эйнштейна – Смолуховского.
- •80. Диффузия. Уравнение Фика. Факторы, влияющие на диффузию.
- •81. Осмос. Определение величины осмотического давления.
- •82. Седиментация. Определение скорости седиментации.
- •83. Седиментационная и кинетическая устойчивость коллоидной системы.
- •84. Оптические свойства коллоидных систем. Эффект Тиндаля. Уравнение Рэлея.
- •85. Оптические свойства коллоидных систем. Нефелометрия и турбидиметрия.
- •86. Электро-кинетические явления в коллоидных системах, их характеристика.
- •87. Электрофорез. Количественные характеристики.
- •88. Электроосмос. Факторы, влияющие на электроосмос.
- •89. Эффект седиментации. Потенциал седиментации.
- •90. Потенциал протекания и потенциал течения: сходство и различие.
- •91. Двойной электрический слой. Основные теории образования дэс.
- •92. Устойчивость коллоидных систем. Виды устойчивости.
- •93. Коагуляция, основные стадии. Порог коагуляции.
- •94. Коагуляция под действием электролита. Правило Шульце-Гарди.
- •95. Методы очистки коллоидных систем.
- •96. Высокомолекулярные соединения. Понятие о растворах вмс. Классификация вмс.
- •97. Высокомолекулярные соединения. Свойства растворов вмс.
- •98. Вязкость, основные характеристики. Факторы, влияющие на вязкость. Уравнение Эйнштейна.
- •99. Вязкость крови.
- •100. Набухание. Механизм процесса. Факторы, влияющие на процесс.
- •101. Студни и гели, основные характеристики.
- •102. Застудневание, механизм процесса.
- •103. Тиксотропия, основные характеристики.
- •104. Механизм образования заряда на вмс.
- •105. Устойчивость растворов вмс. Высаливание и коацервация.
53. Дисперсные системы. Суспензии.
Суспензия или взвесь — смесь жидкости или газа с твердыми частицами, находящиеся во взвешенном состоянии
Или
Суспензия — это дисперсная система с жидкой дисперсионной средой и твёрдой диспергированной (дисперсной) фазой, частицы которой достаточно велики, чтобы противодействовать броуновскому движению.
Обычно частицы дисперсной фазы настолько велики (более 10 мкм), что оседают под действием силы тяжести (седиментируют).
Суспензии, в которых седиментация идет очень медленно из-за малой разницы в плотности дисперсной фазы и дисперсионной среды, иногда называют взвесями.
В концентрированных суспензиях легко возникают дисперсные структуры.
Типичные суспензии — пульпы, буровые промывочные жидкости, цементные растворы, эмалевые краски.
Широко используются в производстве керамики, пластмасс, лаков и красок, бумаги.
Вязкость суспензии
Вязкость суспензии увеличивается с ростом объёмной концентрации утяжелителя и его дисперсности и не зависит от природы утяжелителя и его плотности.
54. Дисперсные системы. Эмульсии.
Эму́льсия— дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы), распределенных в другой жидкости (дисперсионной среде).
Эмульсии могут быть образованы двумя любыми несмешивающимися жидкостями; в большинстве случаев одной из фаз эмульсий является вода, а другой — вещество, состоящее из слабополярных молекул (например, жидкие углеводороды, жиры). Одна из первых изученных эмульсий — молоко. В нём капли молочного жира распределены в водной среде.
Эмульсии относятся обычно к грубодисперсным системам, поскольку капельки дисперсной фазы имеют размеры от 1 до 50 мкм. Эмульсии низкой концентрации — неструктурированные жидкости. Высококонцентрированные эмульсии — структурированные системы.
Основные типы эмульсий
Тип эмульсии зависит от состава и соотношения её жидких фаз, от количества и химической природы эмульгатора, от способа эмульгирования и некоторых других факторов.
Прямые, с каплями неполярной жидкости в полярной среде (типа «масло в воде»)
Для эмульсий типа м/в хорошими эмульгаторами могут служить растворимые в воде мыла (натриевые и калиевые соли жирных кислот). Молекулы этих соединений, адсорбируясь на поверхности раздела фаз, не только снижают поверхностное натяжение на ней, но благодаря закономерной ориентации в поверхностном слое создают в нем плёнку, обладающую механической прочностью и защищающей эмульсию от разрушения.
Обратные, или инвертные (типа «вода в масле»)
Для эмульсии типа в/м хорошими эмульгаторами могут быть нерастворимые в воде мыла (кальциевые, магниевые и алюминиевые соли жирных кислот).
Получение эмульсий
Эмульсии образуются двумя путями:
-путём дробления капель.
Этот метод осуществляется путём медленного прибавления диспергируемого вещества в дисперсную систему в присутствии эмульгатора при непрерывном и сильном перемешивании. Главными факторами, от которых зависит степень дисперсности частиц получаемой эмульсии и её устойчивость, является скорость перемешивания, скорость введения диспергируемого вещества, его количество, природа эмульгатора и его концентрация, температура и pH среды.
-путём образования плёнок и их разрыва на мелкие капли.
Механизм образования состоит в следующем. Жидкость, образующая дисперсную фазу (например, масло), при медленном прибавлении к дисперсионной среде образует плёнку. Эта плёнка разрывается пузырьками воздуха, выходящими из отверстия трубки, которые находятся на дне сосуда. Образуются мелкие единичные капли. Одновременно пузырьки воздуха энергично размешивают всю жидкость и этим самым способствуют дальнейшему эмульгированию. В настоящее время для получения концентрированной эмульсии масла с водой её подвергают действию ультразвука.
Применение эмульсий
Эмульсии широко используют в различных отраслях промышленности:
Пищевая промышленность (сливочное масло, маргарин, майонез);
Мыловарение;
Переработка натурального каучука;
Строительная промышленность (битумные материалы, пропиточные композиции);
Автомобильная промышленность (получение смазочно-охлаждающих жидкостей);
Металлообработка (смазочно-охлаждающие жидкости);
Сельское хозяйство (пестицидные препараты);
Медицина (производство лекарственных и косметических средств);
Живопись.
