- •1. Основные понятия химической термодинамики.
- •2. Первое начало термодинамики: формулировки, аналитическое выражение. Первое начало термодинамики в биологических системах.
- •3. Закон Гесса. Следствия из закона Гесса.
- •4. Закон Кирхгоффа.
- •5. Основные термодинамические процессы.
- •6. Калориметрические измерения.
- •7. Второе начало термодинамики: формулировки, математическое выражение. Второе начало термодинамики в живых организмах.
- •8. Энтропия, как функция состояния системы. Статистическая интерпретация энтропии.
- •9. Термодинамические потенциалы системы.
- •10. Тепловая теорема Нернста.
- •11. Абсолютная энтропия. Уравнение Больцмана.
- •12. Термодинамика растворов. Закон Рауля. Отклонения от закона Рауля.
- •13. Термодинамика растворов. Образование растворов, растворимость: газ/газ.
- •14. Термодинамика растворов. Образование растворов, растворимость: газ/жидкость.
- •15. Термодинамика растворов. Первый закон Коновалова, термодинамический вывод.
- •16. Термодинамика растворов. Второй закон Коновалова, термодинамический вывод.
- •17. Термодинамика растворов. Перегонка. Диаграмма перегонки жидкостей.
- •18. Термодинамика растворов. Криоскопическая и эбуллиоскопические постоянные.
- •19. Термодинамика растворов. Теория электролитической диссоциации.
- •20. Термодинамика растворов. Изотонический коэффициент.
- •21. Термодинамика растворов. Механизм разделения жидкостей методом перегонки.
- •22. Термодинамика растворов. Осмотическое давление разбавленных растворов.
- •23. Термодинамика растворов. Понятие активности растворенного вещества.
- •24. Химическое равновесие. Константа химического равновесия.
- •25. Химическое равновесие. Условия химического равновесия.
- •26. Химическое равновесие. Химический потенциал.
- •27. Химическое равновесие. Изотерма химической реакции.
- •28. Химическое равновесие. Влияние внешних условий на химическое равновесие: давление, концентрация, температура.
- •29. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния воды.
- •30. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния серы.
- •31. Фазовые равновесия. Уравнение Клаузиуса-Клайперона.
- •32. Буферные растворы. Механизм действия буферных растворов.
- •33. Буферные растворы. Буферная емкость.
- •34. Буферные растворы. Буферные системы организма.
- •35. Буферные растворы. Уравнение Гендерсона – Гассельбаха для определения рН и рОн протолитических буферных растворов.
- •36. Буферные растворы. Кислотно-основное равновесие. Основные причины и типы нарушений кислотно-основного равновесия организма и возможности коррекции.
- •37. Скорость химической реакции. Понятие о периоде полупревращения.
- •38. Скорость химической реакции. Энергия активации. Уравнение Аррениуса.
- •39. Скорость химической реакции. Кинетическое уравнение химической реакции.
- •40. Скорость химической реакции. Порядок реакции. Методы определения порядка реакции.
- •41. Скорость химической реакции. Влияние температуры на скорость реакции.
- •42. Каталитические процессы. Основные характеристики катализатора. Факторы, влияющие на снижение активности катализатора.
- •47. Каталитические процессы. Теория мультиплетов.
- •48. Электрохимия. Гальванический элемент. Эдс Гальванического элемента.
- •49. Электрохимия. Электродный потенциал. Уравнение Нернста.
- •50. Электрохимия. Проводники I и II рода.
- •51. Электрохимия. Электроды сравнения.
- •52. Дисперсные системы. Классификация дисперсных систем.
- •53. Дисперсные системы. Суспензии.
- •54. Дисперсные системы. Эмульсии.
- •55. Дисперсные системы. Пены.
- •56. Дисперсные системы. Аэрозоли.
- •57. Дисперсные системы. Порошки.
- •58. Дисперсные системы. Диализация коллоидных растворов.
- •59. Дисперсные системы. Структурная единица лиофобных коллоидов.
- •60. Термодинамический анализ адсорбции. Теория мономолекулярной адсорбции Ленгмюра.
- •61. Термодинамический анализ адсорбции. Теория полимолекулярной адсорбции Поляни.
- •62. Термодинамический анализ адсорбции. Уравнение Фрейндлиха.
- •63. Термодинамический анализ адсорбции. Адсорбция из растворов электролитов.
- •64. Термодинамический анализ адсорбции. Ионная адсорбция. Факторы, влияющие на ионную адсорбцию.
- •65. Термодинамический анализ адсорбции. Изотерма адсорбции.
- •66. Термодинамика поверхностного слоя. Поверхностное натяжение.
- •67. Термодинамика поверхностного слоя. Изотермы поверхностного натяжения.
- •68. Термодинамика поверхностного слоя. Пав и пиав: строение молекул и их свойства.
- •69. Термодинамика поверхностного слоя. Изотерма адсорбции Гиббса. Правило Дюкло-Траубе.
- •70. Термодинамика поверхностного слоя. Методы определения поверхностного натяжения.
- •71. Термодинамика поверхностного слоя. Поверхностная энергия.
- •72. Процесс диспергирования. Самопроизвольное и несамопроизвольное диспергирование.
- •73. Адгезия и когезия.
- •74. Критерий Ребиндера – Щукина, границы его применения.
- •75. Пептизация, виды пептизации.
- •77. Влияние электролита на процесс мицелообразования.
- •78. Молекулярно-кинетические свойства коллоидных систем, их характеристика.
- •79. Броуновское движение. Факторы, влияющие на броуновское движение. Уравнение Эйнштейна – Смолуховского.
- •80. Диффузия. Уравнение Фика. Факторы, влияющие на диффузию.
- •81. Осмос. Определение величины осмотического давления.
- •82. Седиментация. Определение скорости седиментации.
- •83. Седиментационная и кинетическая устойчивость коллоидной системы.
- •84. Оптические свойства коллоидных систем. Эффект Тиндаля. Уравнение Рэлея.
- •85. Оптические свойства коллоидных систем. Нефелометрия и турбидиметрия.
- •86. Электро-кинетические явления в коллоидных системах, их характеристика.
- •87. Электрофорез. Количественные характеристики.
- •88. Электроосмос. Факторы, влияющие на электроосмос.
- •89. Эффект седиментации. Потенциал седиментации.
- •90. Потенциал протекания и потенциал течения: сходство и различие.
- •91. Двойной электрический слой. Основные теории образования дэс.
- •92. Устойчивость коллоидных систем. Виды устойчивости.
- •93. Коагуляция, основные стадии. Порог коагуляции.
- •94. Коагуляция под действием электролита. Правило Шульце-Гарди.
- •95. Методы очистки коллоидных систем.
- •96. Высокомолекулярные соединения. Понятие о растворах вмс. Классификация вмс.
- •97. Высокомолекулярные соединения. Свойства растворов вмс.
- •98. Вязкость, основные характеристики. Факторы, влияющие на вязкость. Уравнение Эйнштейна.
- •99. Вязкость крови.
- •100. Набухание. Механизм процесса. Факторы, влияющие на процесс.
- •101. Студни и гели, основные характеристики.
- •102. Застудневание, механизм процесса.
- •103. Тиксотропия, основные характеристики.
- •104. Механизм образования заряда на вмс.
- •105. Устойчивость растворов вмс. Высаливание и коацервация.
30. Фазовые равновесия. Правило фаз Гиббса. Диаграмма состояния серы.
Кристаллическая сера существует в виде двух модификаций — ромбической (Sр) и моноклинной (SМ). Поэтому возможно существование четырех фаз: ромбической, моноклинной, жидкой и газообразной
Сплошные линии ограничивают четыре области: пара, жидкости и двух кристаллических модификаций. Сами линии отвечают моновариантным равновесиям двух соответствующих фаз. Заметьте, что линия равновесия
моноклинная сера — расплав отклонена от вертикали вправо (сравните с фазовой диаграммой воды). Это означает, что при кристаллизации серы из расплава происходит уменьшение объема. В точках А, В и С в равновесии сосуществует три фазы (точка А ромбическая, моноклинная и пар, точка В — ромбическая, моноклинная и жидкость, точка С — моноклинная, жидкость и пар). Легко заметить, что есть еще одна точка О, в которой существует равновесие трех фаз — перегретой ромбической серы, переохлажденной жидкой серы и пара, пересыщенного относительно пара, равновесного с моноклинной серой. Эти три фазы образуют метастабилъную систему, т.е. систему, находящуюся в состоянии относительной устойчивости. Кинетика превращения метастабильных фаз в термодинамически стабильную модификацию крайне медленна, однако при длительной выдержке или внесении кристаллов-затравок моноклинной серы все три фазы все же переходят в моноклинную серу, которая является термодинамически устойчивой в условиях, отвечающих точке О. Равновесия, которым соответствуют кривые ОА, ОВ и ОС (кривые возгонки, плавления и испарения соответственно), являются метастабильными.
31. Фазовые равновесия. Уравнение Клаузиуса-Клайперона.
32. Буферные растворы. Механизм действия буферных растворов.
Определенным буферным действием обладают также и растворы многих органических веществ, молекулы которых одновременно содержат в своем составе функциональные группы, проявляющие как слабые кислотные (СООН-группы), так и основные (NH2-группы) свойства. По своей природе данные соединения являются амфолитами. К ним относятся аминокислоты, белки, пептиды.
Таким образом, любая кислотно-основная буферная система является равновесной смесью, состоящей из донора и акцептора протонов.
В такой системе, содержащей в своем составе слабую кислоту, различают общую, активную и потенциальную кислотности:
1) общая кислотность соответствует максимально возможной концентрации ионов Н+ в данном растворе, если теоретически предположить, что все имеющиеся в нем молекулы кислоты полностью распадутся на ионы, а гидролиз имеющейся соли можно не учитывать. Общая кислотность численно равна молярной концентрации химического эквивалента кислоты в растворе и определяется опытным путем (например, с помощью титриметрического метода анализа);
2) активная кислотность равна концентрации (или активности) содержащихся «свободных» ионов Н+ (Н3О+), образовавшихся в результате диссоциации некоторого количества молекул кислоты;
3) потенциальная кислотность определяется совокупностью присутствующих в системе недиссоциированных молекул кислоты.
Потенциальная кислотность может быть вычислена вычитанием из общей кислотности активной. Например, для ацетатного буфера все эти виды кислотности можно условно представить следующим образом:
СН3СООН = Н+ + СН3СОО–
потенциальная кислотность активная кислотность общая кислотность
Механизм действия буферных систем
Сущность буферного действия смеси слабой кислоты с ее солью можно рассмотреть на примере ацетатного буферного раствора. При добавлении к нему сильной кислоты (например, HCl) происходит реакция:
CH3COONa + HCl = NaCl + CH3COOH – молекулярное уравнение
CH3COO– + Na+ + H+ + Cl– = Na+ + Cl– + CH3COOH – полное ионное уравнение
H+ + CH3COO– = CH3COOH – сокращенное ионное уравнение
В результате этого воздействия сильная кислота замещается на эквивалентное количество плохо диссоциированной слабой кислоты буферной системы, поэтому концентрация ионов Н+ (активная кислотность) в растворе существенно не изменяется.
Пока солевая компонента буферной системы не расходуется в данной реакции, раствор в той или иной степени будет сохранять свое буферное действие.
При добавлении к буферной смеси сильного основания (например, NaOH) происходит реакция:
CH3COOH + NaOH = CH3COONa + H2O – молекулярное уравнение
CH3COOH + Na+ + OH– = CH3COO– + Na+ + H2O – полное ионное уравнение
CH3COOН + OH– = CH3COO– + H2O – сокращенное ионное уравнение
В результате сильное основание замещается на эквивалентное количество нейтральной соли буферной системы, поэтому концентрация ионов водорода в ней опять изменится незначительно.
Буферное действие раствора при этом будет наблюдаться пока полностью не расходуется слабая кислота.
Если к буферному раствору попеременно добавлять в небольших количествах сильную кислоту или щелочь, то его буферное действие сможет сохраняться более длительное время, т.к. в результате протекающих реакций буферная система будет периодически восстанавливать свой первоначальный количественный и качественный состав.
Для кислотной буферной системы, образованной двумя солями механизм действия будет аналогичным. Рассмотрим его на примере фосфатного буфера: NaH2PO4 + Na2HPO4.
Добавленная к нему сильная кислота провзаимодействует с солевой компонентой системы и заместится на эквивалентное количество компоненты, играющей роль слабой кислоты.
Na2HPO4 + HCl = NaH2PO4 + NaCl – молекулярное уравнение
2Na+ + HPO42– + H+ + Cl– = 2Na+ + H2PO4– + Cl– – полное ионное уравнение
HPO42– + H+ = H2PO4– – сокращенное ионное уравнение
Внесенная щелочь, наоборот, заместится на эквивалентное количество нейтральной солевой компоненты буфера:
NaH2PO4 + NaOH = Na2HPO4 + H2O – молекулярное уравнение
Na+ + H2PO4– + Na+ + OH– = 2Na+ + HPO42– + H2O – полное ионное уравнение
H2PO4– + OH– = HPO42– + H2O – сокращенное ионное уравнение
Механизм действия основных буферных систем рассмотрим на примере аммиачного буфера.
Добавленная к нему сильная кислота провзаимодействует со слабым основанием и заместится на эквивалентное количество солевой компоненты буфера:
NH3 + HCl = NH4Cl – молекулярное уравнение
NH3 + H+ + Cl– = NH4+ + Cl– – полное ионное уравнение
NH3 + H+ = NH4+ – сокращенное ионное уравнение
Щелочь вступит в реакцию с солью буферной системы и вместо нее образуется эквивалентное количество слабого основания:
NH4Cl + NaOH = NH3 + H2O + NaCl – молекулярное уравнение
NH4+ + Cl– + Na+ + OH– = NH3 + H2O + Na+ + Cl– – полное ионное уравнение
NH4+ + OH– = NH3 + H2O – сокращенное ионное уравнение
Таким образом, рассмотренные примеры показывают, что буферное действие растворов независимо от их состава обусловлено взаимодействием внесенных в них ионов Н+ или ОН– с соответствующим компонентом буфера. В результате этого происходит их связывание в растворе за счет образования слабодиссоциированного продукта реакции, т.е. (говоря другими словами) перевод в потенциальную кислотность либо основность. Вследствие этого активная кислотность (основность) самой буферной системы существенно не изменяется и остается на первоначальном уровне.
