Добавил:
Спасибо, Господь, что я ФФ (ТГ: @Lkiplasio) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы к экзамену. ФКХ..docx
Скачиваний:
43
Добавлен:
20.01.2024
Размер:
10.14 Mб
Скачать

15. Термодинамика растворов. Первый закон Коновалова, термодинамический вывод.

Равновесный пар по сравнению с жидкостью относительно обогащён тем компонентом, добавление которого к жидкости повышает общее давление пара над раствором (или, что то же самое, понижает температуру кипения раствора при некотором постоянном давлении).

16. Термодинамика растворов. Второй закон Коновалова, термодинамический вывод.

17. Термодинамика растворов. Перегонка. Диаграмма перегонки жидкостей.

Перегонка двойных жидких растворов 1-го типа

Рассмотрим диаграммы состояния бинарного жидкого раствора, летучие компоненты которого неограниченно растворимы друг в друге и не образуют азеотропную смесь (системы 1-го типа). Для построения диаграммы состояния на одном графике откладываются две зависимости: зависимость давления насыщенного пара от состава раствора и зависимость давления насыщенного пара от состава пара (рисунок 5) или зависимость температуры кипения раствора от состава раствора и зависимость температуры кипения раствора от состава равновесного пара (рисунок 6).  

 

Рис. 5.  Диаграмма состояния системы 1-го типа в координатах                        давление – состав (Т = const)

Рассмотрим диаграмму состояния, изображённую на рисунке 5. Кривая KLMN представляет собой зависимость давления насыщенного пара от состава раствора; над кривой находится область, отвечающая жидкой фазе. Кривая KRQN представляет собой зависимость давления насыщенного пара от состава пара; под кривой находится область, отвечающая газообразной фазе. Область между кривыми – область гетерогенностисистемы. Как видно из диаграммы, раствору состава ХВ отвечает равновесный пар состава YB (точки L и R), давление которого равно Р1, а раствору состава Х'В – равновесный пар состава Y'B (точки M и Q) давление которого равно Р2. Таким образом, увеличение концентрации компонента В приводит к уменьшению общего давления пара, и в соответствии с 1-м законом Коновалова равновесный пар содержит больше компонента А, чем раствор.

При рассмотрении процесса перегонки жидкости при постоянном давлении используется диаграмма состояния в координатах температура кипения – состав, изображённая на рисунке 6.

При рассмотрении процесса перегонки жидкости при постоянном давлении используется диаграмма состояния в координатах температура кипения – состав, изображённая на рисунке 6.  

 

Рис. 6.  Диаграмма состояния системы 1-го типа в координатах                        температура – состав (P = const)  

Кривая KLMN представляет собой зависимость температуры кипения от состава раствора; под кривой находится область, отвечающая жидкой фазе. Кривая KRQN представляет собой зависимость температуры кипения раствора от состава пара; над кривой находится область, отвечающая газообразной фазе. Область между кривыми – область гетерогенности системы.

Как видно из диаграммы, раствор состава ХВ имеет температуру кипения Т1 (точка L), а находящийся с ним в равновесии пар – состав YB (точка R), т.е. обогащён компонентом A, добавление которого к раствору понижает температуру кипения раствора. Диаграмма состояния позволяет не только определить состав равновесных фаз, но и рассчитать их относительные количества. Рассмотрим систему общего состава ХВ, находящуюся при температуре Т2 (точка S). Равновесная жидкая фаза (точка M) будет иметь состав Х'В, а равновесный пар – состав Y'В (точка Q). Относительные количества фаз определяются по правилу рычага; в данном случае количество жидкой фазы (в молях, поскольку состав выражен в мольных долях) будет относиться к количеству пара, как длина отрезка |QS| относится к длине отрезка |SM|.

Таким образом, диаграмма состояния позволяет определить состав фракции, отгоняющейся из раствора состава ХВ в интервале температур от Т1 до Т2. Очевидно, что в этом случае состав фракции будет находиться между YВ и Y'В, т.е. отогнанная фракция будет обогащена по сравнению с исходным раствором компонентом A. Если сконденсированный пар подвергнуть повторной перегонке, будет получена фракция, ещё более обогащённая компонентом A. В результате многократного повторения таких операций может быть получен пар чистого компонента A. Разделение компонентов жидкого раствора, имеющих различные температуры кипения, за счёт многократного повторения циклов испарение – конденсация называется ректификацией. Схематически процесс ректификации показан на рисунке 7.  

 

Рис. 7.  Ректификация смеси летучих жидкостей.  

При перегонке исходного раствора состава Хo состав раствора непрерывно изменяется, и температура кипения повышается. При перегонке в интервале температур от Тo до Т1состав равновесного пара также изменяется от Yo до Y1; его конденсацией будет получена жидкая фракция состава Х2, кипящая при температуре Т2. Перегонкой её в интервале температур от Т2 до Т3 после конденсации пара будет получена фракция состава Х4, кипящая при температуре Т4. Перегоняя последнюю в интервале температур от Т4 до Т5, получают фракцию состава Х6. Состав и температура кипения данной фракции уже довольно близки к чистому компоненту A. Количество необходимых для полного разделения компонентов раствора циклов испарение – конденсация (т.н. число теоретических тарелок ректификационной колонны) определяется природой компонентов (прежде всего разностью их температур кипения) и желаемой степенью чистоты получаемого ректификата и может быть рассчитано с помощью диаграммы состояния системы.