Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
geologia_ekzamen.docx
Скачиваний:
583
Добавлен:
16.03.2015
Размер:
1.26 Mб
Скачать

9.Содержание понятия “инженерно-геологические условия” участка или территории строительства. Основные факторы инженерно-геологических условий, их взаимосвязи.

Инженерно-геологические условия — комплекс современных геологических особенностей, определяющих условия инженерных изысканий, строительства и эксплуатации инженерных сооружений (узкий подход), или условия инженерно-хозяйственной деятельности человека в целом (широкий подход).( составная часть комплекса работ, выполняемых для обеспечения строительного проектирования и производства работ необходимыми данными.)Этот комплекс включает в себя 5 составляющих, которые называются компонентами, или факторами инженерно-геологических условий:1)геологическое строение местности и характер слагающих ее пород; 2) рельеф; 3) гидрогеологические условия; 4) мерзлотные условия; 5) современные геологические процессы.

Каждый из них характеризуется большим числом параметров. Наиболее важными из них являются характер и условия залегания грунтов, их состав, состояние и свойства, морфологические и морфометрические особенности рельефа, распространение мерзлых, талых и немерзлых толщ, их температура, мощность мерзлых пород, их криогенное строение, глубина сезонного протаивания-промерзания и пр., типы, закономерности распространения, глубины залегания, водообильность и режим подземных вод, их состав и минерализация, агрессивность по отношению к строительным материалам и др. современные геологические процессы и явления.

10 . Сейсмические явления. Виды землетрясений, сейсмическая шкала . Сейсмическое районирование. Уточнение сейсмичности и сейсмического риска для отдельной территории в зависимости от ее инженерно-геологических условий.

Землетрясения делятся на тектонические, вулканические, денудационные и техногенные. Наиболее сильные – тектонические. Их причина – накопление энергии в некоторых областях ЗК вследствие происходящих в ней и подстилающей мантии процессов. Разрядка накопленной энергии и есть землетрясение, всегда проявляющееся как волновой нестационарный случайный процесс с толчками, колебаниями, смещениями пород по существующим разломам и с появлением новых разрывов и трещин. Место разрядки энергии, или очаг землетрясения называется гипоцентром, а его проекция на поверхность – эпицентром.

Вулканические землетрясения сопутствуют извержениям вулканов; денудационные возникают вследствие больших обвалов в горах, провалов в полости ЗК, образующиеся при некоторых геологических процессах. Техногенные землетрясения связаны с деятельностью человека; примеры – ядерные взрывы, устройство глубоких водохранилищ, закачка больших объемов воды в глубокие скважины.

Для оценки силы землетрясений используется 12-бальная шкала. Баллы устанавливаются по проявлениям землетрясения, включая ощущения людей, повреждения и разрушения сооружений, смещения пород и др. Применяются также другие шкалы; например, в сообщениях СМИ часто указывается магнитуда по шкале Рихтера, характеризующая энергию землетрясения.

На основе длительных исследований в СССР была составлена карта сейсмического районирования.

Однако общая карта сейсмического районирования не может отразить всех особенностей участка. Возможно, что в пределах большого по территории города различные его районы будут подвержены различному сейсмическому риску. Уточнение его, или сейсмическое микрорайонирование проводится на основе учета ИГУ конкретного участка.

Перечислим факторы, заставляющие повышать сейсмический риск и соответственно балльность участка, указав также и возникающие опасности:

- резко расчлененный, тем более горный рельеф, вследствие чего резко возрастает опасность обвалов, оползней, селевых потоков;

- наличие на участке и вблизи него тектонических нарушений (разломы, сбросы, сдвиги и др.), по которым возможны смещения пород;

- высокое положение уровня подземных вод, обводненность пород;

- наличие в основании сильно выветрелых, трещиноватых скальных пород;

- то же – водонасыщенных песков (а для рыхлых – независимо от влажности) и глинистых грунтов с IL>0,5. При сейсмических воздействиях возможно разжижение таких грунтов в основаниях сооружений, откосах насыпей и выемок.

- то же, вечномерзлых песчаных и глинистых грунтов, если предполагается их оттаивание при строительстве или эксплуатации сооружения; при этом их влажность повышается и они переходят в категорию предыдущих грунтов. В СНиП «Строительство в сейсмических районах» грунты подразделены на три категории; из них первая – благоприятные, а третья – неблагоприятные грунты, повышающие сейсмическую опасность. При первых расчетная сейсмичность может быть понижена, а при третьих, наоборот, повышена.

Антисейсмические мероприятия можно разделить на пассивные и активные. К первым относятся ограничения на нагрузки и параметры сооружений. Например, при сейсмичности 7…9 баллов высота насыпей на песчано-глинистых грунтах ограничена 20 метрами, глубина выемок 15 м. Сюда же относится прогноз землетрясения, информация населения о поведении и защите, страхование и другие меры социального характера.

Активные меры сейсмозащиты зависят от типа сооружений и рассматриваются в специальных курсах..

11.Основы грунтоведения. Строительная классификация грунтов. Примеры грунтов каждого песка, их свойства. Дисперсные грунты как многокомпонентные системы. Твердая, жидкая и газообразная компоненты грунтов ,свойства каждой из них. Структура и структурные связи в грунтах .Показатели состава и состояния, водных и механических (прочности и сжимаемости ) свойств грунтов.

Поэтому по строительным свойствам выделяются следующие группы пород: скальные, полускальные, крупнообломочные, песчаные, глинистые и особые.

К скальным и полускальным относятся породы с прочными кристаллизационными или цементационными связями отдельных частиц. Практически это все МГП, ММГП, ОГП обломочные цементированные, аргиллиты, алевролиты, химические и биохимические ОГП. Формальным критерием для выделения полускальных является меньшая прочность (расчетное сопротивление сжатию R < 5 МПа).

Три следующих группы представляют собой дисперсные (раздробленные) породы, состоящие из твердых частиц и пор, заполненных жидкостью (обычно вода) и газом (обычно воздух, иногда метан, сероводород и др.) В некоторых случаях присутствуют микроорганизмы, бактерии (биота). Таким образом, дисперсные грунты представляют собой многокомпонентные системы (обычно трехфазные) и их строительные свойства определяются как свойствами отдельных составных частей (компонент или фаз), так и их соотношением. Детально они изучаются в грунтоведении.

В последнюю группу особых объединены породы, обладающие тем или иным особым, характерным только для них свойством. Это, например, торф, лесс, мерзлые грунты.

Состав грунтов.

Грунты состоят из: твердых частиц; воды в различных видах и состояниях (в том числе

льда при нулевой или отрицательной температуре грунта); газов (в том числе и воздуха).

Вода и газы находятся в порах между твердыми частицами (минеральными и органическими). Вода может содержать растворенные в ней газы, а газы могут содержать пары воды.

Строительная классификация грунтов по физическим свойствам

Структурные междучастичные связи в грунтах можно подразделить на жесткие (кри-сталлизационные) связи и пластичные, вязкие связи (водноколлоидные). Жесткие связи более характерны для скальных грунтов, пластичные связи, главным образом, – для глинистых грунтов. Жесткие связи могут быть растворимыми в воде или нерастворимыми.

Соотношение составных частей грунта можно охарактеризовать тремя основными физическими показателями:

Плотность ρ – отношение массы образца к его объему (обычно ρ= 1,5 …2,2 т/м3); плотность частиц грунта ρs – отношение массы частиц к их объему (обычно ρs = 2,5…2,7 т/м3); влажность ω – отношение массы воды в пробе к массе частиц. Обычно влажность значительно меньше единицы, но для торфа возможно и ω > 1, причем намного больше.

На практике часто используются показатели, которые можно рассчитать по основным, например:

- плотность сухого грунтаd - отношение массы частиц к объему (пробы) грунта;

- пористость n – отношение объема пор ко всему объему; пористость можно рассчитать по введенным показателям: n = 1 - d/s;

- коэффициент пористости е – отношение объема пор к объему частиц, причем n и е взаимосвязаны: е = n/(1- n);

- степень влажности Sr – отношение объема воды к объему пор; если поры грунта полностью заполнены водой, то Sr = 1 и такая влажность представляет собой полную влагоемкость, или водопоглощение грунта.

Значения пористости или коэффициента пористости позволяют характеризовать состояние грунта по плотности – плотное, средней плотности или рыхлое. По значению Sr грунты подразделяются на маловлажные (Sr <0,5), водонасыщенные (Sr > 0,8) и влажные при значении в указанном интервале.

Для глинистых грунтов, кроме приведенных, важными показателями являются влажности, соответствующие верхней и нижней границам пластичности, получившие названия верхнего и нижнего пределов пластичного состояния грунта, или, соответственно, его пределов раскатывания ωp и текучести ωL. Их разность называется числом пластичности; это интервал влажности, в котором глинистая порода находится в пластичном состоянии.

Для твердых частиц главное значение имеют минеральный и гранулометрический составы; для песчаных и более крупных фракций важны форма и характер поверхности обломков.

Вода в грунтах по ее свойствам, характеру движения подразделяется на свободную (гравитационную и капиллярную) и связанную (прочно- и рыхлосвязанную). Гравитационная вода перемещается в грунтах под действием разности напоров; капиллярная – сил поверхностного натяжения; рыхлосвязанная под действием осмотических сил и разности температур. Прочносвязанная вода может быть удалена только высушиванием грунта. Состав и состояние грунтов характеризуются такими показателями, как плотность, влажность, пористость, пределы и число пластичности, показатель текучести и др. Во взаимосвязи с характеристиками структуры и структурных связей (водноколлоидные или цементационные) они используются в классификациях, по которым составляется общее представление о грунте, о таких его свойствах, как прочность и сжимаемость, водопоглощение и водоотдача, водопроницаемость, усадка и набухание, размокание и липкость и др. Количественно прочность характеризуется зависимостями сопротивления сдвигу и деформаций от напряженного состояния грунта. Грунтоведение устанавливает обусловленность показателей прочности и сжимаемости (внутреннее трение, сцепление, модуль деформации и др.) генетическим типом, составом и состоянием грунта.