
- •§ 1.1. Основные понятия взаимозаменяемости.
- •§ 1.2. Основные понятия стандартизации и сертификации.
- •Виды и категории стандартов
- •Условные обозначения
- •§ 2. Номинальный, предельный и действительный размеры деталей. Ряды предпочтительных чисел. Нормальные линейные размеры.
- •На основании ряда предпочтительных чисел в диапазоне размеров от 1 мкм до 20 м разработан гост р 6636-69 Основные нормы взаимозаменяемости. Нормальные линейные размеры.
- •§ 3. Погрешность и точность изготовления детали. Закон нормального распределения случайных погрешностей изготовления.
- •§ 4. Предельные размеры и предельные отклонения детали. Понятие допуска, его графическое изображение.
- •§ 5. Классификация соединений деталей. Понятия посадки, зазора и натяга.
- •§ 5.1. Понятие зазора.
- •§ 5.2. Понятие натяга.
- •§ 6. Виды посадок. Допуск посадки. Схема расположения допусков. Связь точности изготовления деталей с точностью их соединений.
- •§ 6.1. Посадки с зазором
- •§ 6.2. Посадки с натягом
- •§ 6.3. Переходные посадки
- •§ 7. Единые принципы построения систем допусков и посадок для типовых соединений деталей машин. Системы посадок основного отверстия и основного вала.
- •§ 7.1. Система отверстия.
- •§ 7.2. Система вала.
- •§ 8. Принципы выбора системы посадок. Примеры применения системы отверстия и системы вала.
- •§ 8.1. Принципы выбора системы посадок
- •Технико-экономические соображения
- •Конструктивные соображения
- •§ 9. Расположение полей допусков относительно нулевой линии. Основные отклонения и их обозначения на чертеже.
- •§ 10. Степень точности (квалитет) размера детали. Единица допуска.
- •§ 11.1. Влияние квалитета на поле допуска.
- •§ 11.2. Влияние основного отклонения на расположение поля допуска.
- •§ 11.3. Образование посадок с зазором.
- •§ 11.4. Образование посадок с натягом.
- •§ 12. Обозначение предельных отклонений и посадок на чертежах.
- •§ 13. Назначение и расчет посадок с натягом, примеры применения.
- •§ 13.1. Примеры применения посадок.
- •§ 14. Назначение и расчет посадок с зазором, примеры применения.
- •Примеры применения.
- •§ 15. Назначение и расчет переходных посадок, примеры применения.
- •Примеры применения.
- •§ 17. Допуски и посадки шпоночных соединений, обозначение посадок на чертежах.
- •§ 18. Допуски и посадки шлицевых соединений, обозначение посадок на чертежах.
- •§ 19. Классификация резьб. Профиль и основные параметры метрической резьбы.
- •§ 20. Допуски и посадки резьбовых соединений. Схемы расположения полей допусков. Обозначения на чертежах.
- •§ 20. 1. Особенности обозначения и изображения полей допусков резьбовых деталей.
- •Образование полей допусков для предпочтительной посадки 6h/6g.
- •Обозначение резьбовых соединений на сборочных чертежах.
- •Обозначение резьбовых деталей на рабочих чертежах.
- •§ 21. Методы и средства контроля резьбовых соединений.
- •§ 22. Взаимозаменяемость зубчатых колес. Нормы кинематической точности, плавности работы и контакта зубчатых колес.
- •Прибор для измерения кинематических погрешностей (Тайтса).
- •§ 23. Виды сопряжений зубчатых колес. Обозначение точности и вида сопряжений на чертежах. Полнота зубьев в передаче.
- •Степени точности зубчатых колес.
- •Виды сопряжения зубчатых колес. Обозначение точности и вида сопряжений на чертежах.
- •Обозначение на чертежах.
- •3) Параметры шероховатости, связанные с формой неровностей профиля:
- •Обозначение шероховатости на чертежах.
- •§ 25. Взаимозаменяемость по форме поверхностей деталей. Обозначения на чертежах.
- •Отклонение от плоскостности.
- •Отклонение от прямолинейности.
- •Отклонение цилиндрических поверхностей.
- •Отклонение от цилиндричности.
- •Отклонение от круглости.
- •Отклонение формы профиля продольного сечения.
- •Обозначение на чертежах.
- •§ 26. Взаимозаменяемость по расположению поверхностей деталей. Обозначения на чертежах.
- •Отклонение от параллельности плоскости.
- •Отклонение от перпендикулярности.
- •Отклонение угла наклона относительно плоскости или оси.
- •Отклонение от соосности.
- •Отклонение от симметричности.
- •Отклонение от пересечения полей.
- •Суммарное отклонение формы и расположения поверхности.
- •Торцевое биение.
- •§ 27. Понятие о метрологии и решаемые ею задачи.
- •Погрешность измерения.
- •Основные задачи измерения:
- •§ 27.1. Правовые основы обеспечения единства измерений. Основные положения закона рф об обеспечении единства измерений. Государственная система обеспечений единства измерений.
- •§ 27.2. Метрологическая экспертиза конструкторско-технологической документации.
- •§ 27.3. Средства измерений. Основные понятия и классификация.
- •§ 27.4. Метрологические показатели и характеристики средств измерений.
- •Метрологические характеристики си.
- •§ 27.5. Погрешность и точность средств измерений. Класс точности средств измерений. Общие принципы выбора средств измерений.
- •Класс точности средств измерения.
- •§ 27.6. Методы измерений. Понятия и классификация.
- •§ 27.7. Погрешность и точность измерений. Основные понятия. Виды погрешностей измерений.
- •§ 27.8. Обработка результатов измерений. Однократные и многократные измерения. Исключение грубых и систематических погрешностей измерений. Оценка случайной составляющей погрешности измерений.
- •§ 27.9. Обработка результатов косвенных измерений.
- •§ 27.10. Бесшкальные контрольные инструменты. Калибры, их назначение и использование для контроля гладких цилиндрических деталей.
- •§ 28. Стандартизация
- •§ 28.1 Цели и задачи стандартизации в Российской Федерации.
- •§ 28.2. Органы и службы стандартизации Российской Федерации.
- •§ 28.3. Государственная и международная системы стандартизации.
- •§ 28.4 Нормативные документы по стандартизации.
- •§ 28.5 Категории и виды стандартов, применяемых в Российской Федерации
- •§ 28.6 Основные методы и виды стандартизации.
- •§ 29 Сертификация продукции
- •§ 29.1 Понятие о сертификации и ее принципы. Цели сертификации.
- •§ 29.2 Виды сертификации
- •§ 29.3 Объекты обязательной и добровольной сертификации.
- •§ 29.4 Системы сертификации.
- •§ 29.5 Схемы сертификации
- •§ 29.6 Методика проведения сертификации продукции, производства и услуг.
§ 2. Номинальный, предельный и действительный размеры деталей. Ряды предпочтительных чисел. Нормальные линейные размеры.
Размер – числовая характеристика какой-либо линейной или угловой величины в определенных единицах измерения.
Под номинальным размером понимают полученный расчетом размер какой-либо детали, округленный до ближайшего числа ряда предпочтительных чисел или нормальных линейных размеров. Он служит началом отсчета для всех параметров взаимозаменяемости.
В стандартизации используется несколько рядов предпочтительных чисел, построенных по принципу геометрической прогрессии.
Рассмотрим ряд - R5. Показатель соответствующей геометрической прогрессии равен:
,
а ряд выглядит следующим образом:
1,0; 1,6; 2,5; 4,0….
R5 - самый крупнодисперсный ряд.
Аналогично:
для ряда R10
→
;
для ряда R20
→
;
для ряда R40
→
;
для ряда R80
→
.
Допускается
использование выборочных рядов. Например,
в ряде
берется каждый 3-ий член из рядаR10.
Применение рядов предпочтительных чисел создает возможности оптимального сочетания затрат на производство с качеством продукции, что позволяет сократить номенклатуру обрабатываемого инструмента, оборудования и приспособления.
Выбор ряда определяется минимизацией совокупности затрат на производство и эксплуатацию (рис. 1).
На основании ряда предпочтительных чисел в диапазоне размеров от 1 мкм до 20 м разработан гост р 6636-69 Основные нормы взаимозаменяемости. Нормальные линейные размеры.
При обозначении номинальных размеров используются понятия вала и отверстия. Поверхности, охватывающие в соединении другие поверхности, относятся к отверстиям.
Если в соединении используется охватываемая поверхность, то она относится к валам.
У отверстий размеры обозначаются заглавными буквами (D), у валов - строчными (d).
Номинальные размеры указываются на рабочих чертежах. После изготовления размер детали отличается от указанного в связи с различными погрешностями изготовления. Какое бы точное оборудование не использовалось невозможно достичь нулевой погрешности.
Размер изготовленной детали измеренной с допустимой погрешностью называется действительным.
Для решения вопроса годности изготовленной детали, необходимо знать предельно допустимые размеры:
для отверстия -
и
,
для вала -
и
.
Из конструкционных
соображений конструктор задает
.
Если действительный
размер входит во множество размеров,
границами которых являются
и
,
то деталь годна, иначе – брак (рис. 2).
При измерении
допускается погрешность в 10 раз меньше,
чем размер поля разброса действительных
диаметров (–
).
Лекция №3
§ 3. Погрешность и точность изготовления детали. Закон нормального распределения случайных погрешностей изготовления.
Под погрешностью изготовления понимается разность между действительным размером детали и наилучшим, т.е. обеспечивающим оптимальное функционирование изделия. Обычно наилучший размер расположен в середине поля допуска:
(3.1)
Точность - степень приближения действительного размера детали к оптимальному.
Пусть изготовлена
партия из n
деталей по
одному и тому же чертежу. В силу случайных
погрешностей размеры деталей в партии
отличаются друг от друга. Если причины
появления погрешностей носят случайный
характер, например отклонение температуры
окружающей среды, неоднородность
физико-механических свойств материала
заготовки, разброс в режимах обработки
в связи с неточностью их воспроизведения
станком, то такие погрешности называются
случайными.
Пусть каждая из этих деталей имеет
некоторый диаметр Di
(),
отягощенный случайной погрешностью. В
большинстве случаев распределение
изготовленных деталей, например поD,
отвечает закону
нормального распределения погрешностей
или закону
Гаусса:
(3.2)
где
-
плотность вероятности;
-
математическое ожидание,
;
- среднее квадратичное
отклонение,
;
-
дисперсия, параметр, характеризующий
величину случайных погрешностей.
Анализируя формулу
(3.2), можно убедиться, что плотность
вероятности достигает максимума при
:
;
(3.3)
(3.4)
где
- функция Лапласа;
- квантиль Гаусса;
()
- доверительный интервал.
Приведем некоторые распространенные значения функции Лапласа:
;
Площадь под кривой (вероятность появления значения измеренной величины) в интервале от -∞ до +∞ всегда равна единице (рис. 3).
Пусть
величина отрезка равна
В технологии
обычно выбирают такое оборудование,
чтобы вероятность появления действительного
размера детали внутри интервала
составляла 0,997. В этом случае:
=
,
(3.5)
где
- доверительный интервал.
Для большинства производств выполняется это правило- правило 6σ.