Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЦИТОЛОГИЯ И ГИСТОЛОГИЯ

.pdf
Скачиваний:
3
Добавлен:
22.12.2023
Размер:
2.44 Mб
Скачать

Цитология и гистология

связано с их делением, почкованием или фрагментацией, а происходит путем образования процентриолей. Таким образом, в результате дупликации в клетке содержатся четыре попарно связанные центриоли. В этом периоде материнская центриоль продолжает играть роль центра образования цитоплазматических микротрубочек. В периоде G2 обе материнские центриоли покрываются фибриллярным гало (зона тонких фибрилл), от которого в профазе начнут отрастать митотические микротрубочки. В этом периоде в цитоплазме происходит исчезновение микротрубочек и клетка стремиться приобрести шаровидную форму. В профазе митоза диплосомы расходятся к противоположным полюсам клетки. От фибриллярного гало материнской центриоли отходят микротрубочки, из которых формируется веретено деления митотического аппарата. Таким образом, центриоли являются центрами организации роста микротрубочек. В телофазе происходит разрушение веретена деления. Следует отметить, что в клетках высших растений, некоторых водорослей, грибов, ряда простейших центры организации роста микротрубочек центриолей не имеют. У некоторых простейших центрами индукции образования микротрубочек выступают плотные пластинки, связанные с мембраной.

2. Строение ресничек и жгутиков эукариотических клеток

Реснички и жгутики – органоиды специального назначения, выполняющие двигательную функцию и выступающие из клетки. Различий в ультрамикроскопическом строении ресничек и жгутиков нет. Жгутики отличаются от ресничек лишь длиной. Длина ресничек составляет 5-10 мкм, а длина жгутиков может достигать 150 мкм. Диаметр их составляет около 0,2 мкм. Причем клетки, имеющие реснички и жгутики, в свободном состоянии обладают способностью двигаться. Неподвижные клетки, благодаря движению ресничек, способны перемещать жидкости и частички веществ.

Жгутик это органоид движения у бактерий, ряда простейших, зооспор и сперматозоидов. В клетке обычно бывает от 1 до 4 жгутиков.

Ресничка – это органоид движения или рецепции у клеток животных и некоторых растений. Траектория движения ресничек очень разнообразна. В различных клетках это движение может быть маятникообразным, крючкообразным, воронкообразным или волнообразным.

Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы, покрытый цитоплазматической мембраной. Внутри выроста расположена аксонема ("осевая нить"), состоящая в основном из микротрубочек. В основании реснички находится базальное тело, погруженное в цитоплазму. Диаметры аксонемы и базального тельца

Полесский государственный университет

Страница 51

Цитология и гистология

одинаковы (около 150 нм). Базальное тельце, как и центриоли, состоит из 9 триплетов микротрубочек и имеет "ручки". Часто в основании реснички лежит не одна, а пара базальных телец, располагающихся под прямым углом друг к другу подобно диплосоме - центриоли. Аксонема в отличие от базального тельца или центриоли имеет 9 дублетов микротрубочек с "ручками", образующих стенку цилиндра аксонемы. Кроме периферических дублетов микротрубочек, в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9 х 2) + 2 в отличие от (9 х 3) + 0 системы центриолей и базальных телец. Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое: две микротрубочки триплетов базального тельца являются микротрубочками дублетов аксонемы.

Для объяснения способа движения ресничек и жгутиков используется гипотеза "скользящих нитей". Считается, что незначительные смещения дублетов микротрубочек друг относительно друга могут вызвать изгиб всей реснички. Если такое локальное смещение будет происходить вдоль жгутика, то возникает волнообразное движение.

3. Фибриллярные структуры цитоплазмы

Цитоплазма клетки представляет собой вязкую жидкость, поэтому из-за поверхностного натяжения клетка должна иметь шаровидную форму. Однако помимо шаровидной встречается множество других форм клеток (кубические, призматические, звездчатые, дисковидные, с разнообразными отростками и другие). Форма определяется с помощью жестких, параллельно расположенных волокон. Эти волокна называются фибриллярными структурами цитоплазмы. К ним относятся микротрубочки, микрофиламенты

ипромежуточные филаменты. Эти структуры образуют цитоскелет клетки

(опорно-двигательная система). Цитоскелет определяет форму клетки, участвует в передвижении клетки, во внутриклеточном транспорте органоидов

иотдельных соединений.

Микротрубочки - немембранные органоиды, представляющие собой полые цилиндры длиной около 200 нм и толщиной около 25 нм. Микротрубочки можно обнаружить в цитоплазме практически всех эукариотных клеток. В больших количествах они находятся в цитоплазматических отростках нервных клеток, фибробластов и других изменяющих свою форму клеток. Местом организации роста микротрубочек цитоскелета в интерфазной клетке является центриоль. Микротрубочки

Полесский государственный университет

Страница 52

Цитология и гистология

различного происхождения (реснички простейших, клетки нервной ткани, веретено деления) имеют сходный состав и содержат белки - тубулины. Очищенные тубулины при определенных условиях способны собираться в микротрубочки. Добавление алкалоида колхицина предотвращает самосборку микротрубочек или приводит к разборке уже существующих. В клетке тубулины существуют в двух формах - свободной и связанной. Сдвиг равновесия между этими формами приводит или к диссоциации микротрубочек, или к их росту. Ни тубулины в чистом виде, ни построенные из них микротрубочки не способны к сокращению. В клетках микротрубочки принимают участие в создании ряда временных (цитоскелет интерфазных клеток, веретено деления) или постоянных структур (центриоли, базальные тельца, реснички, жгутики). Кроме того, микротрубочки способствуют ориентированному движению внутриклеточных компонентов.

Микрофиламенты представляют собой тонкие (около 7 нм) белковые нити, встречающиеся практически во всех типах эукариотических клеток. Они расположены пучками или слоями в кортикальном слое цитоплазмы, непосредственно под плазмолеммой. Сеть микрофиламентов выявлена в большинстве клеток. В состав микрофиламентов входят сократительные белки: актин, миозин, тропомиозин, альфа-актинин. Функции микрофиламентов заключаются в образовании цитоскелета и обеспечении большинства внутриклеточных форм движения (токи цитоплазмы, движение вакуолей, митохондрий).

Промежуточные филаменты имеют толщину около 10 нм и также являются белковыми структурами. Это тонкие неветвящиеся, часто располагающиеся пучками нити. Характерно, что их белковый состав различен в разных тканях. В эпителии в состав промежуточных филаментов входит кератин. Пучки кератиновых промежуточных филаментов в эпителиальных клетках образуют тонофибриллы. В состав промежуточных филаментов клеток мезенхимальных тканей (например, фибробластов) входит другой белок - виментин, в мышечные клетки - десмин, в нервных клетках в состав их нейрофиламентов также входит особый белок. Промежуточные филаменты выполняют опорно-каркасную функцию.

4. Рибосомы

Рибосомы (ribosomae) — элементарные аппараты синтеза белковых, полипептидных молекул — обнаруживаются во всех клетках. Рибосомы — это сложные рибонуклеопротеиды, в состав которых входят белки и молекулы

Полесский государственный университет

Страница 53

Цитология и гистология

рибосомальных РНК (рРНК) примерно в равных весовых отношениях. Размер функционирующей рибосомы эукариотических клеток 25 х 20 х 20 нм. Такая рибосома состоит из большой и малой субъединиц. Каждая из субъе-диниц построена из рибонуклеопротеидиого тяжа, где рРНК взаимодействует с разными белками и образует тело рибосомы.

Различают единичные рибосомы и комплексы рибосом (полисомы). Рибосомы могут располагаться свободно в гиалоплазме или быть связанными с мембранами эндоплазматической сети. В малоспециализированных и быстрорастущих клетках в основном обнаруживаются свободные рибосомы. В специализированных клетках рибосомы располагаются в составе грануляр-ной эндоплазматической сети. Синтетическая деятельность свободных рибосом направлена в основном на собственные нужды клетки. Связанные рибосомы обеспечивают синтез белков "на экспорт", т. е. на обеспечение нужд организма. Содержание РНК и соответственно степень белковых синтезов кореллируют с интенсивностью базофилии цитоплазмы, т. е. со способностью окрашиваться основными красителями.

ТЕМА 7 КЛЕТОЧНОЕ ЯДРО

1.Роль ядра в хранении, редупликации и транскрипции генов.

2.Строение ядерной мембраны.

3.Химический состав и строение ядерного матрикса.

4.Состав и роль хроматина. Уровни организации.

5.Химический состав и функции ядрышка.

1.Роль ядра в хранении, редупликации и транскрипции генов

Ядро представляет собой органоид, в котором сосредоточена почти вся наследственная информация клетки. Все организмы, состоящие из клеток, подразделяются на две группы - лишенные ядра прокариоты и имеющие ядро эукариоты. Наследственная информация прокариот, к которым относятся бактерии, сине-зеленые водоросли и микоплазмы, зашифрована в молекуле ДНК длиной не более 2 мм, тогда как общая длина молекулы ДНК эукариот может достигать 2 см. ДНК бактерий кодирует около 3000 генов, в то время как ДНК эукариот кодирует до 30 000 генов.

Полесский государственный университет

Страница 54

Цитология и гистология

Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую – с ее реализацией, с обеспечением синтеза белка. В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменным в ряду поколений клеток или организмов. Далее, в ядре происходит воспроизведение или редупликация и разъединение (сегрегация) молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном и количественном смысле объемы генетической информации. В ядре эукариот происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток. Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственного аппарата белкового синтеза. Это не только синтез, транскрипция, на молекулах ДНК разных информационных РНК, но также транскрипция всех видов трансферных РНК и рибосомных РНК. В ядрах эукариотических клеток происходит «созревание» (процессинг, сплайсинг) первичных транскриптов. В ядре эукариот происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал воспроизводится и функционирует. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом. Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке ли к грубым его

Полесский государственный университет

Страница 55

Цитология и гистология

нарушениям.

Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков – основных функционеров в жизнедеятельности клетки.

Функционирование ядра как системы хранения и реализации генетической информации сопряжено с другими функциональными системами клетки, которые обеспечивают работу ядра специальными белками, потоком предшественников, энергией и пр.

2. Строение ядерной мембраны

Оболочка ядра нуклеолемма изолирует его содержимое от цитоплазмы. Она состоит из наружной и внутренней мембран толщиной по 7-10 нм, между которыми имеется перинуклеарнос пространство шириной 15-30 нм. Наружная мембрана часто связана с цистернами и канальцами плазматической сети. Поэтому перинуклеарное пространство может сообщаться с плазматической сетью и другими компонентами мембранной системы клетки. Наружная мембрана ядра обладает большим сходством с цитоплазматическими мембранами. Кроме липидов и белков, она содержит до 16 % углеводов. К ней могут прикрепляться рибосомы и полирибосомы, синхронно с репликацией ДНК синтезирующие ядерные белки.

Внутренняя мембрана нуклеолеммы обладает рядом химических и структурных особенностей. С внутренней стороны к ней плотно прилегает фиброзный слой, или ламина, толщиной 10-20 нм, который состоит из белков промежуточных филаментов. С ламиной тесно связан внутренний ядерный матрикс, поэтому даже при полном удалении нуклеолеммы ядро сохраняет свою форму.

Наружная и внутренняя мембраны нуклеолеммы соединены между собой в ядерных порах, которые представляют собой отверстия в нуклеолемме диаметром около 80 нм. Как с цитоплазматической, так и с ядерной стороны по краю поры располагаются два кольца, каждое из которых состоит из 8 уплощенных субъединиц. На внутренней поверхности поры имеется 8 радиальных выступов, или "спиц", локализация которых совпадает с расположением субъединиц в кольцах. С цитоплазматической стороны с каждой субъединицей кольца связана частица диаметром 25 нм. В центре поры часто видна еще одна, центральная гранула диаметром 10-40 нм. Внутри поры иногда можно заметить и другие структуры. В частности, с ядерной стороны у входа в пору обнаруживаются фибриллярный, а с цитоплазматической стороны

Полесский государственный университет

Страница 56

Цитология и гистология

- гранулярный материал. В целом ядерные поры вместе с окружающими се структурами формируют поровые комплексы, диаметр которых достигает 100-

120 нм.

Структура поровых комплексов не обладает тканевыми или видовыми особенностями. Их количество в ядре пропорционально числу хромосом и может меняться в зависимости от метаболической активности клетки. Поровые комплексы обеспечивают селективный транспорт веществ между ядром и цитоплазмой, но детали этого процесса остаются неясными. Недавно было показано, что поровые комплексы участвуют в процессинге и РНК, которые транскрибируются в расположенных рядом участках генома. Имеются также данные о том, что поровые комплексы специфически распознают поступающие из цитоплазмы в ядро белки.

3. Химический состав и строение ядерного матрикса

Ядерный матрикс выделяют, обработав изолированные клеточные ядра неионными детергентами в сочетании с обработкой 2М раствором NaCl, ДНКазой и РНК-азой. Он состоит из ламины, белкового скелета ядрышек и фибриллярно-гранулярной сети. Основной компонент ядерного матрикса представлен многочисленными гранулами диаметром 25-30 нм, которые соединяются между собой в фибриллярные структуры.

В химическом отношении ядерный, матрикс практически полностью построен из белков. Наиболее изученные из них - это ламины А, В и С (молекулярная масса 65-70 кД). Ламины А и С имеют почти идентичную аминокислотную последовательность, но первый из них длиннее второго на 82 остатка. Центральные α-спиральные домены этих белков обладают большим сходством первичной структуры с гомологичными доменами кератинов и других белков промежуточных филаментов цитоплазмы. В физиологическом растворе ламины А и С образуют фибриллы диаметром 10 нм. Ламин В существенно отличается от ламинов А и С не только первичной структурой, но и более прочной связью с нуклеолеммой, входя в состав поровых комплексов. В отличие от белков промежуточных филаментов цитоплазмы ламины образуют не фибриллы, а трехмерные сети с ортогональной укладкой молекул.

Функции ламинов заключаются в поддержании размеров и формы клеточного ядра, а также его перестройке при делении клетки или гибели ее путем апоптоза. В частности, циклин-зависимые киназы клеточного деления фосфорилируют ламины А и С, что вызывает обратимую дезинтеграцию нуклеолеммы. При апоптозе ламины атакуются специфическими протеазами -

Полесский государственный университет

Страница 57

Цитология и гистология

каспазами, необратимо разрушающими ядерный матрикс.

Помимо ламинов, в состав ядерного матрикса входит еще не менее пяти групп белков с молекулярной массой от 10 до 200 кД. Некоторые из них обеспечивают прикрепление ДНК к ядерному матриксу (белки MAR - matrix attachment regions).

Представления о кариолимфе (нуклеоплазме, ядерном соке) возникли еще в то время, когда о химическом составе ядра почти ничего не было известно. Позднее ее рассматривали как содержащийся в ядре коллоидный раствор белка, который не окрашивается применяемыми в световой микроскопии основными или кислыми красителями и слабо контрастируется на электронно-микроскопических препаратах. Тем не менее, понятие о кариолимфе сохранилось до сих пор для обозначения растворимой фракции клеточного ядра. Подразумевается, что в нее входят вода, а также растворенные в ней ионы натрия, калия, хлора, магния и кальция, низкомолекулярные ДНК и РНК, ферменты, метаболиты транскрипции и репликации, транспортные и другие молекулы.

4. Состав и роль хроматина. уровни организации

При наблюдении живых или фиксированных клеток внутри ядра выявляются зоны плотного вещества, которые хорошо воспринимают разные красители, особенно основные. Благодаря такой способности хорошо окрашиваться этот компонент ядра и получил название "хроматин". Такими же свойствами обладают и хромосомы, которые отчетливо видны как плотные окрашивающиеся тельца во время митотического деления клеток. В неделящихся (интерфазных) клетках хроматин, выявляемый в световом микроскопе, может более или менее равномерно заполнять объем ядра или же располагаться отдельными глыбками.

В состав хроматина входит ДНК в комплексе с белками. Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации хромосом и их участков морфологи называют эухроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки

конденсированного хроматина, иногда называемого гетерохроматином.

Степень деконденсации хромосомного материала — хроматина в интерфазе может отражать функциональную нагрузку этой структуры. Чем "диффузнее" распределен хроматин в интерфазном ядре, тем интенсивнее в нем

Полесский государственный университет

Страница 58

Цитология и гистология

синтетические процессы.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных телец — хромосом.

Вэтот период хромосомы не выполняют никаких синтетических функций,

вних не происходит включения предшественников ДНК и РНК.

Таким образом, хромосомы клеток могут находиться в двух структурнофункциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Наблюдения за структурой хроматина с помощью электронного микроскопа показали, что как в препаратах выделенного интерфазного хроматина или выделенных митотических хромосом, так и в составе ядра на ультратонких срезах всегда видны элементарные хромосомные фибриллы толщиной 20-25 нм.

Вхимическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов (ДНП), в состав которых входят ДНК и специальные хромосомные белки — гистоновые и негистоновые.

Всоставе хроматина обнаруживается также РНК. Количественные отношения ДНК, белка и РНК составляют 1:1,3:0,2. Обнаружено, что длина индивидуальных линейных молекул ДНК может достигнуть сотен микрометров и даже сантиметров. Среди хромосом человека самая большая первая хромосома содержит ДНК с общей длиной до 4 см. Суммарная длина

молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х1012 г.

Вхромосомах существует множество мест независимой репликации, т. е. удвоения ДНК — репликонов. ДНК эукариотических хромосом представляют собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. В составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы. Синтез ДНК как на участках отдельной хромосомы, так и среди разных хромосом идет неодновременно, асинхронно. Так, например, в некоторых хромосомах человека (1,3, 16) репликация наиболее интенсивно начинается в плечах хромосом и заканчивается (при высокой интенсивности включения метки) в центромерном районе. Наиболее поздно репликация заканчивается в

Полесский государственный университет

Страница 59

Цитология и гистология

хромосомах или в их участках, находящихся в компактном, конденсированном состоянии. Таким примером может являться поздняя репликация генетически инактивированной Х-хромосомы у женщин, формирующей в ядре компактное тельце полового хроматина.

Белки хроматина составляют 60—70 % от его сухой массы. К ним относятся так называемые гистоны и негистоновые белки. Негистоновые белки составляют 20 % от количества гистонов. Гистоны — щелочные белки, обогащенные основными аминокислотами (главным образом лизином и аргинином).

Молекулы ДНК имеют диаметр 2 нм, но их длина в хромосомах может достигать нескольких сантиметров. Очевидно, что упаковка таких длинных молекул в объеме клеточного ядра, имеющего диаметр всего 5-8 мкм, должна быть в высшей степени регулярной. Проблема укладки молекул ДНК в ограниченном объеме ядра осложняется еще и тем, что одновременно необходимо обеспечить возможность локальной распаковки ДНК и доступа к ней ферментов репликации и транскрипции. Вот почему хроматин в клеточном ядре образует сложные пространственные структуры с несколькими уровнями организации.

Первый уровень укладки ДНК в хроматине обеспечивается нуклеосомами. Они представляют собой округлые частицы диаметром 15 нм, которые связаны между собой участками ДНК длиной около 20 нм. Отдельная нуклеосома состоит их белковой сердцевины, на которую накручена молекула ДНК.

Белковая сердцевина нуклеосомы, или кор, имеет форму диска диаметром 11 нм и толщиной 6 нм. Она содержит по две молекулы гистонов П2А, ШВ, НЗ и Н4. Если развернуть сердцевину, то можно обнаружить, что молекулы гистонов соединены в последовательности 112А, Н2В, Н4, НЗ, НЗ, Н4, ШВ, Н2А. При сворачивании сердцевины молекулы гистонов располагаются как бы в два этажа, наподобие винтовой лестницы.

Молекула ДНК в виде левозакрученной суперспирали совершает 1,75 оборота вокруг сердцевины. При этом в непосредственный контакт с гистонами вступает 146 пар нуклеотидов. Длина линкерной ДНК, соединяющей соседние нуклеосомы, колеблется в пределах 40-70 пар нуклеотидов в зависимости от типа клетки. Таким образом, на одну нуклеосому приходится в среднем около 200 пар нуклеотидов ДНК.

Нуклеосомы укорачивают молекулу ДНК примерно в 7 раз. Они обнаружены во всех эукариотических клетках и даже у ДНК-содержащих вирусов. Однако это не означает, что вся ДНК клеточного ядра связана с

Полесский государственный университет

Страница 60