
- •Неорганическая химия теория
- •1. Основные понятия химии: атом, хим. Элемент, молекула, эквивалент, молярная масса эквивалента, относительная атомная масса, моль, молярная масса.
- •2, Основные стехиометрические законы: закон сохранения массы и энергии, закон постоянства состава, закон кратных отношений, закон эквивалентов.
- •3. Основные газовые законы: закон объемных отношений, закон Гей-Люссака, объединенный газовый закон, уравнение Менделеева-Клапейрона.
- •4. Основные классы и номенклатура неорганических веществ: оксиды (солеобразующие и несолеобразующие, основные, кислотные, амфотерные), гидроксиды.
- •5. Основные классы и номенклатура неорганических веществ: кислоты и соли.
- •6. Диссоциация воды, константа диссоциации, pH, ионное произведение воды.
- •7. Развитие учения о строении атома (Модель Томсона, опыты Резерфорда, постулаты Бора), квантово- механическая теория.
- •8. Характеристика основных квантовых чисел: n, m, l, s; строение электронных оболочек атомов.
- •9. Периодическая система элементов, как форма отражения периодического закона.
- •10. Ковалентная химическая связь, способы образования ковалентной связи.
- •11. Геометрия структур с ковалентным типом связей (sp1-, sp2-, sp3- гибридизация).
- •12. Ионная и металлическая связь.
- •13. Водородная связь. Межмолекулярные взаимодействия (Ориентационное взаимодействие, индукционное взаимодействие, дисперсионное взаимодействие).
- •14. Метод валентных связей и метод молекулярных орбиталей.
- •15. Кристаллическое состояние веществ атомные и молекулярные кристаллические решетки. Примеры.
- •16. Химические реакции, скорость химических реакций.
- •17. Влияние температуры на скорость химической реакции, правило Вант-Гоффа.
- •18. Катализ, влияние катализатора на скорость химической реакции.
- •19. Химическое равновесие, принцип Ле-Шателье.
- •20. Внутренняя энергия, энтальпия, энтропия.
- •21. Законы Генри, законы Рауля, закон Дальтона.
- •22. Осмотическое давление, закон Вант-Гоффа.
- •23. Особенности растворов электролитов. Основные положения теории электролитической диссоциации.
- •24. Произведение растворимости, реакция обмена в растворах электролитов.
- •25. Теория овр, важнейшие окислители и восстановители, метод электронного баланса, метод полуреакции.
- •26. Электролиз. Электродный потенциал, водородный электрод.
- •27. Гидролиз солей. Количественные характеристики гидролиза.
- •28. Гальванический элемент и его э. Д. С. Влияние условий на протекание овр.
- •29. Номенклатура и классификация комплексных соединений.
- •30. Характеристика комплексных соединений, константа стойкости и константа неустойчивости.
- •31. Общая характеристика водорода. Физические и химические свойства. Окислительно-восстановительные свойства пероксида водорода.
- •32. Галогены, общая характеристика, свойства простых веществ.
- •33. Галогеноводороды, плавиковая и соляная кислоты.
- •34. Кислородсодержащие соединения галогенов. Оксиды и фторид оксигена.
- •35. Кислородсодержащие соединения галогенов. Гидроксиды и соли.
- •36. Общая характеристика халькогенов. Свойства простых веществ.
- •37. Гидриды халькогенов. Биологическое действие халькогеноводородов.
- •38. Оксиды халькогенов, диоксиды и триоксиды.
- •39. Сернистая, селенистая и теллуристая кислоты.
- •40. Серная, селеновая и теллуровые кислоты.
- •41. Промышленные способы получения серной кислоты.
- •42. Общая характеристика элементов vа группы. Соединения азота, фосфора, сурьмы и висмута в природе.
- •43. Химические свойства элементов vа группы, взаимодействие с простыми веществами. Взаимодействие с водой кислотами и щелочами.
- •44. Оксиды азота (n2o, no, n2o3, n2o5).
- •45. Азотистая кислота и ее соли.
- •46. Бинарные соединения элементов vа группы. Соединения с водородом.
- •47. Гидразин и гидроксиламин. Окислительно -восстановительные свойства.
- •48. Аммиак его получение и свойства. Соли аммония. Нашатырь.
- •49. Азотная кислота. Физические и химические свойства концентрированной и разбавленной азотной кислоты.
- •50. Промышленные способы получения азотной кислоты. Нитраты, разложение нитратов.
- •51. Кислородсодержащие соединения фосфора. Оксиды фосфора (lll и V).
- •52. Кислородсодержащие соединения мышьяка, сурьмы и висмута (lll и V).
- •53. Фосфорная, фосфористая и фосфорноватистые кислоты.
- •54. Гидролиз фосфатов. Показатель кислотности среды.
- •55. Гидроксиды мышьяка, сурьмы и висмута.
- •56. Общая характеристика элементов четвертой а группы. Аллотропные модификации углерода. Строение и свойства кремния.
- •57. Германий, олово, свинец, химические свойства.
- •58. Углерод и кремний, химические свойства.
- •59. Гидриды элементов четвертой а группы. Оксиды углерода.
- •60. Угольная кислота и ее соли. Жесткость воды и способы ее устранения. Карбонатное равновесие в природе.
- •61. Кислородсодержащие соединения кремния. Диоксид кремния.
- •62. Щелочные металлы. Общая характеристика оксидов, гидроксидов и солей. Калийные удобрения.
- •63. Щелочноземельные металлы. Общая характеристика оксидов, гидроксидов и солей. Известь и ее применение.
- •64. Характеристика vib подгруппы. Химические и физические свойства простых веществ. Способы получения хрома, молибдена и вольфрама.
- •65. Соединения трехвалентного хрома. Оксиды и гидроксиды. Применение.
- •66. Соединения шестивалентного хрома. Оксиды и гидроксиды. Применение.
- •67. Подгруппа марганца. Физические и химические свойства простых веществ.
- •68. Окислительно-восстановительные свойства соединений марганца.
35. Кислородсодержащие соединения галогенов. Гидроксиды и соли.
Ответ. Взаимодействие галогенов с водой - сложный процесс, включающий растворение, образование сольватов и диспропорционирование. Фтор в отличие от других галогенов воду окисляет: 2H2O + 2F2 = 4HF + O2. Однако при насыщении льда фтором при -400С образуется соединение HFO. Растворимость (моль/л) хлора, брома и иода в воде незначительна, причем с повышением температуры для хлора она уменьшается, брома - практически не меняется, а иода - увеличивается. Гипогалогенитные кислоты HXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути: 2X2 + 2HgO + H2O = HgO. HOF образуется при пропускании фтора над льдом при -400С и конденсацией образующегося газа при температуре ниже 0оС. F2,газ + H2Oлед = HOF + HF. HOF, в частности, не образует солей, а при его взаимодействии с водой появляется пероксид водорода: HOF + H2O = H2O2 + HF. Гипогалогенитные кислоты являются слабыми. При переходе от хлора к иоду по мере увеличения радиуса и уменьшения электроотрицательности атом галогена слабее смещает электронную плотность от атома кислорода и, тем самым, слабее поляризует связь Н-О. В результате кислотные свойства в ряду HClO - HBrO - HIO ослабляются. Растворы гипогалогенитов имеют сильно щелочную реакцию, а пропускание через них СО2 приводит к образованию кислоты, например, NaClO + H2O + CO2 = NaHCO3 + HClO. Окислительная способность кислот HXO и ионов в том же ряду с термодинамической точки зрения уменьшается. Это следует из сравнения величин стандартных потенциалов Ео(табл.9) и наклонов линий, соединяющих вольт-эквиваленты пар X2 |HXO. Высокую окислительную способность гипохлоритов иллюстрируют следующие реакции: NaСlO +2NaI + H2O = NaCl + I2 + 2NaOH, 2NaClO + MnCl2 + 4NaOH = Na2MnO4 + 4NaCl + 2H2O. Скорость же реакции окисления и диспропорционирования в ряду HClO-HBr-HIO увеличивается. Это обусловлено увеличением радиуса галогена. Таким образом, термодинамическая и кинетическая стабильность в ряду HClO-HBrO-HIO изменяются в противоположных направлениях. Действительно, константа равновесия диспропорционирования гипохлорит-иона велика, но скорость распада мала. Поэтому гипохлориты можно получить действием хлора на холодный раствор щелочи. В промышленности таким образом получают белильную известь (формула CaOCl2 отражает основной состав, в продуктах взаимодействия присутствуют Ca(OCl)2, Ca(OH)2, CaCl2 содержащие кристаллизационную воду): Ca(OH)2 + Cl2 = CaCl(OСl) +H2O. Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4: Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2. HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде: 2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2. 2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O. Бромит бария удалось синтезировать по реакции: Ba(BrO)2 + 2Br2 + 4KOH = Ba(BrO2)2 +4KBr + 2Н2О. Оксокислоты HXO3 более устойчивы, чем HXO. Хлорноватая HClO3 и бромноватая HBrO3 кислоты получены в растворах с концентрацией ниже 30%, а твердая йодноватая HIO3 выделена как индивидуальное вещество. Растворы HClO3 и HBrO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например, Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4. При концентрации растворов выше 30% кислоты HBrO3 и HClO3 разлагаются со взрывом. Твердую йодноватую кислоту можно получить окислением иода концентрированной HNO3, хлорноватой кислотой или перекисью водорода: I2 + 5Н2О2 = 2HIO3 + 4H2O. При нагревании происходит ее дегидратация: 2HIO3 = I2O5 + H2O. Водные растворы HXO3 являются сильными кислотами. В ряду HClO3-HBrO3-HIO3 наблюдается некоторое уменьшение силы кислот. Это можно объяснить тем, что с ростом размера атома галогена прочность кратной связи О уменьшается, что приводит к уменьшению полярности связи H-O и уменьшению легкости отрыва от нее водорода молекулами воды. Действительно, в кислой среде при взаимодействии бромата натрия с хлором или иодом выделяется свободный бром: 2NaBrO3 + Cl2 = 2NaClO3 + Br2. 2NaBrO3 + I2 = 2NaIO3 + Br2, а взаимодействие иода с раствором хлората натрия приводит к выделению хлора: 2NaСlO3 + I2 = 2NaIO3 + Cl2. Известно также, что HClO3 существует лишь в растворах, а HIO3 выделена в виде бесцветных кристаллов (т.пл.110оС). Соли более устойчивы к нагреванию, чем соответствующие кислоты. В частности, некоторые из иодатов встречаются в природе в виде минералов, например, лаутарит NaIO3. При нагревании твердого КСIO3 до 500оС возможно диспропорционирование 4KClO3 = 3KClO4 +KCl, (в присутствии катализаторов, например, MnO2, удается не только снизить температуру разложения, но и изменить путь процесса:), а при более высокой температуре разложение расплава KClO4 = KClO4 KCl +2O2. Состав продуктов разложения броматов и иодатов зависит от природы катиона, например, 2KIO3 = 2KI + 3O2 (аналогично и броматы щелочных металлов); 2Cu(BrO3)2 = 2CuO + 2Br2 + 5O2 (аналогично иодат кальция); 5Ba(IO3)2 = Ba5(IO6)2 +4I2 +9O2. Хотя, метаиодная кислота HIO4 и некоторые ее соли известны, иод(VII) из-за роста радиуса в ряду Сl-Br-I и повышения его координационного числа образует, главным образом, гидроксопроизводные состава (HO)5IO, H5IO6, в которых атом иода октаэдрически окружен атомом кислорода и пятью гидроксильными группами. Хлорная кислота (Тпл.= -102оС, Ткип.= 90оС) получена в индивидуальном состоянии нагреванием твердой соли КClO4 с концентрированной H2SO4 с последующей отгонкой при пониженном давлении: КClO4тв.+ H2SO4,конц HClO4 + KHSO4. HClO4 легко взрывается при контакте с органическими веществами. Бромная кислота HBrO4 известна лишь в растворах (не выше 6М), получаемых подкислением перброматов NaBrO4, которые, в свою очередь, удалось синтезировать окислением броматов фтором в разбавленных щелочных растворах (броматы можно окислить до перброматов с помощью XeF2 или электролитически): NaBrO3 + F2 + 2NaOH = NaBrO4 + 2NaF +H2O. Хлорная кислота - одна из сильных кислот. По силе к ней приближается бромная кислота. Иодная кислота существует в нескольких формах, главными из которых являются ортоиодная H5IO6 и метаиодная HIO4 кислоты. Ортоиодная кислота образуется в виде бесцветных кристаллов при осторожном упаривании раствора, образующегося при обменной реакции: Ba3(H2IO6)2 + 3H2SO4 = 3BaSO4 + 2H5IO6. В кристаллическом состоянии вещество имеет молекулярную структуру: в узлах кристаллической решетки находятся октаэдры (HO)5IO. Ортоиодная кислота в водных растворах проявляет свойства слабой пятиосновной кислоты. Константы диссоциации H5IO6 по 4-ой и 5-ой ступеням настолько малы, что в водных щелочных растворах возможно оттитровать только первые три протона, что соответствует образованию солей типа KH4IO6, K2H3IO6 и K3H2IO6 (Соль состава K4HIO6получить не удается). В ряде случаев из растворов выделяется средняя соль, например, Ag5IO6, устойчивость которой обусловлена высокой энергией кристаллической решетки и полимерной структурой. При осторожном нагревании ортоиодной кислоты образуется метаиодная кислота H5IO6 = HIO4 + 2H2O. Как и в случае кислот HXO3, термодинамическая и кинетическая стабильность кислот HXO4 и их солей различаются. Термодинамическая устойчивость иодной кислоты и периодатов к разложению выше, чем хлорной кислоты и перхлоратов. Бесцветная концентрированная HClO4 даже при комнатной температуре синтеза темнеет из-за образования оксидов хлора с более низкими степенями окисления. Метаиодная кислота разлагается только при нагревании: 2HIO4 = 2HIO3 + O2. Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность. Рассмотренные термодинамические закономерности не совпадают с кинетическими: скорость реакции окисления с участием ионов и оказывается медленной. Например, взаимодействие 70%-ой HClO4 с магнием сопровождается выделением водорода: Mg + 2 HClO4 = Mg(ClO4)2 + H2, а 1М раствор HBrO4 не окисляет хлор из HCl. В случае же H5IO6 подобная реакция протекает без кинетических затруднений: H5IO6 + 2HCl = HIO3 + Cl2 + 3H2O. Галогениды — группа минералов, представляющих собой соединения галогенов с другими химическими элементами или радикалами. К галогенидным минералам относятся фтористые, хлористые и очень редкие бромистые и иодистые соединения. Фтористые соединения (фториды), генетически связаны с магматической деятельностью, они являются возгонами вулканов или продуктами гидротермальных процессов, иногда имеют осадочное происхождение. Галогенидные минералы являются oсадками морей и озёр и главными минералами соляных толщ и месторождений. Некоторые галогенные соединения образуются в зоне окисления сульфидных (медных, свинцовых и других) месторождений. Типичные минералы класса фторидов — виллиомит NaF, флюорит CaF2, криолит Na3AlF6; класса хлоридов — галит NaCl, сильвин КCl, карналлит KMgCl3·6(H2O). Сырьё в пищевой, химической, металлургической промышленности.