
- •Предмет, задачи общей и неорганической химии. Роль химии в естественных науках.
- •Основные понятия химии
- •Основные стехиометрические законы.
- •4. Важнейшие классы и номенклатура неорганических веществ.
- •5. Строение атома; развитие учения о строении атома; модели Томсона, Резерфорда, Бора.
- •6. Строение электронных оболочек атомов.
- •7. Периодический закон и периодическая система элементов.
- •8. Периодичность свойств химических элементов.
- •9. Природа химической связи. Основные типы химической связи.
- •10. Ковалентная химическая связь. Способы образования ковалентной связи. Основные характеристики.
- •11. Свойства ковалентной связи. Степень окисления атома.
- •12. Геометрия структур с ковалентным типом связи (гибридизация sp, sp2, sp3)
- •13. Основы метода валентных связей и метода молекулярных орбиталей.
- •14. Ионная и металлическая связь. Водородная связь. Межмолекулярное взаимодействие
- •15. Кристаллическое, жидкое и аморфное состояние веществ.
- •16. Скорость химических реакций. Константа скорости и ее физические свойства
- •17. Влияние температуры на скорость химических реакций. Основные положения теории активации Аррениуса.
- •18. Катализ. Влияние катализаторов на скорость химических реакций.
- •19. Необратимые и обратимые реакции. Принцип Ле Шателье.
- •20. Дисперсные системы и их характеристика. Коллоидные растворы
- •3. По агрегатному состоянию дисперсионной среды и дисперсной фазы.
- •21. Растворение как физико-химический процесс.
- •22. Растворимость веществ. Состав растворов.
- •23. Основные положения теории электролитической диссоциации.
- •24. Сильные и слабые электролиты. Степень диссоциации электролитов. Факторы, определяющие степень диссоциации.
- •25. Теория сильных электролитов. Истинная и кажущаяся степень диссоциации сильных электролитов.
- •26. Константа диссоциации слабых электролитов. Закон разбавления Оствальда
- •27. Основания, кислоты и соли с точки зрения теории электролитической диссоциации.
- •28. Диссоциация воды. Константа диссоциации, ионное произведение воды. Водородный показатель. Понятие об индикаторах.
- •29. Произведение растворимости. Условия образования и растворения осадков. Реакции обмена в растворах электролитов.
- •30. Гидролиз солей. Количественные характеристики гидролиза.
- •31. Теория окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Составление уравнений окислительно-восстановительных реакций. Метод электронного баланса.
- •32. Ионно-электронный метод (метод полуреакций). Классификация окислительно-восстановительных реакций.
- •33. Электрохимические процессы. Электродный потенциал. Стандартные электродные потенциалы. Водородный электрод.
- •34. Электрохимический ряд напряжений металлов. Уравнение Нернста. Гальванический элемент и его э.Д.С. Влияние условий на протекание окислительно-восстановительных процессов.
- •35. Основные положения координационной теории. Строение комплексного соединения.
- •36. Устойчивость комплексных соединений. Понятие о двойных солях. Биологическая роль комплексных соединений.
- •37. Общая характеристика водорода. Гидриды. Ион водорода и ион гидроксония.
- •38. Галогены. Общая характеристика элементов. Особенности фтора. Свойства простых веществ галогенов.
- •39. Галогеноводороды. Галогениды. Особенности плавиковой кислоты. Соляная кислота. Роль соляной кислоты и хлоридов в живых организмах.
- •40. Кислородсодержащие соединения галогенов. Кислородные кислоты хлора и их соли. Хлорная известь. Бертолетова соль. Перхлораты. Кислородосодержащие кислоты брома, иода и их соли.
- •41. Общая характеристика элементов via группы. Особенности кислорода. Аллотропия и изоморфизм серы. Свойства простых веществ. Применение и биологическое значение халькогенов.
- •42. Гидриды типа н2э. Ассоциация молекул воды. Токсичность сероводорода и других халькогеноводородов, их физиологическое действие.
- •43. Вода. Клатраты. Вода как растворитель. Вода в природе и ее роль в жизнедеятельности организмов. Пероксид водорода.
- •44. Халькогениды. Растворимость и гидролиз сульфидов металлов. Полисульфиды.
- •45. Оксиды халькогенов. Диоксиды и триоксиды элементов. Сернистая, селенистая и теллуристая кислоты.
- •52. Фосфорные удобрения. Сложные минеральные удобрения.
- •1. Мышьяк
- •2. Сурьма
- •3. Висмут
- •54.Общая характеристика элементов iva группы. Способность
- •56.Кислородсодержащие соединения углерода. Оксиды углерода.
- •57. Угольная кислота и ее соли. Временная жесткость воды и
- •57.Угольная кислота и ее соли. Временная жесткость воды и способы ее устранения. Карбонатное равновесие в природе.
- •59.Общая характеристика металлов. Общая характеристика валентных состояний металлов а и в групп. Значение и роль металлов в жизнедеятельности живых организмов.
8. Периодичность свойств химических элементов.
Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие, как атомный радиус, энергия ионизации, энергия сродства к электрону, электроотрицательность.
Атомный радиус. Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому введены два условных понятия атомных радиусов:
- эффективный;
- орбитальный.
Эффективный атомный радиус определяется экспериментально (из спектрографических данных) как ½ расстояния между центрами ядер двух соседних атомов в молекуле или кристалле.
Орбитальный атомный радиус – это расстояние от ядра атома до наиболее удаленного максимума электронной плотности.
В пределах каждой подгруппы элементов радиусы, как правило, увеличиваются при увеличении номера периода (или Z), так как возрастает число энергетических уровней.
В
периоде атомные радиусы с ростом
порядкового номера уменьшаются (от
щелочного металла к инертному газу).
Атом Na имеет радиус 1,8
,Mg
– 1,6
,
Сl – 0,73
.Объяснить
это можно тем, что с увеличением заряда
ядра увеличивается сила кулоновского
притяжения электронов к ядру, которая
превалирует над силами взаимного
отталкивания электронов.
Радиусы положительных ионов всегда меньше радиусов отриц ионов и наоборот.
Энергия ионизации – это минимальная энергия для удаления электрона от невозбужденного атома.
В периоде слева направо энергия ионизации возрастает и восстановительные свойства элементов убывают. Наименьшие значения энергии ионизации имеют щелочные элементы, находящиеся в начале периода, наибольшими значениями энергии ионизации характеризуются благородные газы, находящиеся в конце периода, что обусловлено возрастанием заряда ядра и уменьшением размеров атомов.
Сродство к электрону – называют энергию, выделяющуюся или поглощающуюся в процессе присоединения электрона к свободному атому в его основном состоянии с превращением его в отрицательный ион A-.
В периодах слева направо сродство к электрону и окислительные свойства элементов возрастают (исключение для N и P). В подгруппах сверху вниз сродство к электрону, как правило, уменьшается.
Электроотрицательность – способность атомов удерживать внешние электроны. Электроотрицательность (ЭО) элемента характеризует способность его атомов притягивать к себе электроны, участвующие в образовании химических связей с другими атомами в молекуле, ионе. Очевидно, что эта способность зависит от энергии ионизации атома и его сродства к электрону. Не является абсолютной константой и зависит от эффективного заряда ядра атома, который может меняться под влиянием соседних атомов, типов атомных орбиталей и характера их гибридизации.
9. Природа химической связи. Основные типы химической связи.
Химическая связь – это вид межатомных взаимодействий в молекулах, ионах, кристаллах, характеризуемый определенной энергией
Основные характеристики химической связи:
1.Энергия связи, Есв, определяет ее прочность – это количество энергии, которое нужно затратить на ее разрыв или количество энергии, выделяемое при образовании молекулы из атомов. Единица измерения энергии связи – кДж/моль (эВ/моль). Энергия химической связи изменяется в интервале 40 ÷ 400 кДж/моль.
+2. Длина связи, ℓ, - расстояние между центрами двух атомов, образующих молекулу.
Валентный угол – угол между прямыми, соединяющими центры ядер атомов в молекуле. Валентными углами определяется пространственное строение молекул. Величины валентных углов зависят от природы атомов и характера связи.
Различают 3 типа химической связи: ковалентная, ионная и металлическая. Основными параметрами химической связи являются: длина (межъядерное расстояние связанных атомов), прочность (энергия, выделяющаяся при образовании или затрачиваемая на разрыв связи), валентный угол или угол связи (угол между прямыми, проходящими через ядра связанных атомов), полярность (дипольный момент)
Ковалентная связь(атомная связь, гомеополярная связь) –связь, обусловленная наличием электронных пар, общих для соединяющихся атомов.
Ионная связь – тип химической связи, энергия которой в основном определяется электростатическими силами притяжения противоположно заряженных ионов (катионов и анионов).
Более строго ее следует рассматривать как предельный случай ковалентной полярной связи, так как реально полного разделения зарядов, т.е. перехода электрона от одного атома к другому, никогда не происходит.
В целом ионное соединение представляют как гигантскую ассоциацию ионов противоположных знаков, а химические формулы ионных соединений – как простейшее соотношение между числом атомов элементов, входящих в состав такой ассоциации.
Металлическая связь- это химическая связь, образующая между атомами в металлическом кристалле пространством полного обобществления валентных электронов.
Ковалентная полярная - связь между атомами неметаллами (сложны вещества).
Ковалентная неполярная - связь между неметаллами (простые вещества).
Ионная связь – соли
Водородной называют связь образуемую атомом водорода, который ковалентно связан с атомом сильно электроотрицательного элемента А и другим подобным атомом В .