
- •Предмет, задачи общей и неорганической химии. Роль химии в естественных науках.
- •Основные понятия химии
- •Основные стехиометрические законы.
- •4. Важнейшие классы и номенклатура неорганических веществ.
- •5. Строение атома; развитие учения о строении атома; модели Томсона, Резерфорда, Бора.
- •6. Строение электронных оболочек атомов.
- •7. Периодический закон и периодическая система элементов.
- •8. Периодичность свойств химических элементов.
- •9. Природа химической связи. Основные типы химической связи.
- •10. Ковалентная химическая связь. Способы образования ковалентной связи. Основные характеристики.
- •11. Свойства ковалентной связи. Степень окисления атома.
- •12. Геометрия структур с ковалентным типом связи (гибридизация sp, sp2, sp3)
- •13. Основы метода валентных связей и метода молекулярных орбиталей.
- •14. Ионная и металлическая связь. Водородная связь. Межмолекулярное взаимодействие
- •15. Кристаллическое, жидкое и аморфное состояние веществ.
- •16. Скорость химических реакций. Константа скорости и ее физические свойства
- •17. Влияние температуры на скорость химических реакций. Основные положения теории активации Аррениуса.
- •18. Катализ. Влияние катализаторов на скорость химических реакций.
- •19. Необратимые и обратимые реакции. Принцип Ле Шателье.
- •20. Дисперсные системы и их характеристика. Коллоидные растворы
- •3. По агрегатному состоянию дисперсионной среды и дисперсной фазы.
- •21. Растворение как физико-химический процесс.
- •22. Растворимость веществ. Состав растворов.
- •23. Основные положения теории электролитической диссоциации.
- •24. Сильные и слабые электролиты. Степень диссоциации электролитов. Факторы, определяющие степень диссоциации.
- •25. Теория сильных электролитов. Истинная и кажущаяся степень диссоциации сильных электролитов.
- •26. Константа диссоциации слабых электролитов. Закон разбавления Оствальда
- •27. Основания, кислоты и соли с точки зрения теории электролитической диссоциации.
- •28. Диссоциация воды. Константа диссоциации, ионное произведение воды. Водородный показатель. Понятие об индикаторах.
- •29. Произведение растворимости. Условия образования и растворения осадков. Реакции обмена в растворах электролитов.
- •30. Гидролиз солей. Количественные характеристики гидролиза.
- •31. Теория окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Составление уравнений окислительно-восстановительных реакций. Метод электронного баланса.
- •32. Ионно-электронный метод (метод полуреакций). Классификация окислительно-восстановительных реакций.
- •33. Электрохимические процессы. Электродный потенциал. Стандартные электродные потенциалы. Водородный электрод.
- •34. Электрохимический ряд напряжений металлов. Уравнение Нернста. Гальванический элемент и его э.Д.С. Влияние условий на протекание окислительно-восстановительных процессов.
- •35. Основные положения координационной теории. Строение комплексного соединения.
- •36. Устойчивость комплексных соединений. Понятие о двойных солях. Биологическая роль комплексных соединений.
- •37. Общая характеристика водорода. Гидриды. Ион водорода и ион гидроксония.
- •38. Галогены. Общая характеристика элементов. Особенности фтора. Свойства простых веществ галогенов.
- •39. Галогеноводороды. Галогениды. Особенности плавиковой кислоты. Соляная кислота. Роль соляной кислоты и хлоридов в живых организмах.
- •40. Кислородсодержащие соединения галогенов. Кислородные кислоты хлора и их соли. Хлорная известь. Бертолетова соль. Перхлораты. Кислородосодержащие кислоты брома, иода и их соли.
- •41. Общая характеристика элементов via группы. Особенности кислорода. Аллотропия и изоморфизм серы. Свойства простых веществ. Применение и биологическое значение халькогенов.
- •42. Гидриды типа н2э. Ассоциация молекул воды. Токсичность сероводорода и других халькогеноводородов, их физиологическое действие.
- •43. Вода. Клатраты. Вода как растворитель. Вода в природе и ее роль в жизнедеятельности организмов. Пероксид водорода.
- •44. Халькогениды. Растворимость и гидролиз сульфидов металлов. Полисульфиды.
- •45. Оксиды халькогенов. Диоксиды и триоксиды элементов. Сернистая, селенистая и теллуристая кислоты.
- •52. Фосфорные удобрения. Сложные минеральные удобрения.
- •1. Мышьяк
- •2. Сурьма
- •3. Висмут
- •54.Общая характеристика элементов iva группы. Способность
- •56.Кислородсодержащие соединения углерода. Оксиды углерода.
- •57. Угольная кислота и ее соли. Временная жесткость воды и
- •57.Угольная кислота и ее соли. Временная жесткость воды и способы ее устранения. Карбонатное равновесие в природе.
- •59.Общая характеристика металлов. Общая характеристика валентных состояний металлов а и в групп. Значение и роль металлов в жизнедеятельности живых организмов.
37. Общая характеристика водорода. Гидриды. Ион водорода и ион гидроксония.
Н (лат. hydrogenium), самый легкий газообразный химический элемент - член IA подгруппы периодической системы элементов, иногда его относят к VIIA подгруппе.
Валентность водорода в соединениях
В соединениях водород проявляет валентность I.
Физические свойства водорода
Простое вещество водород (Н2) – это газ, легче воздуха, без цвета, без запаха, без вкуса, tкип = – 2530С, водород в воде нерастворим , горюч. Собирать водород можно путем вытеснения воздуха из пробирки или воды. При этом пробирку нужно перевернуть вверх дном.
Получение водорода
В лаборатории водород получают в результате реакции
Видео - Эксперимент "Получение водорода и проверка его на чистоту"
Zn + H2SO4 = ZnSO4 + H2 .
Вместо цинка можно использовать железо, алюминий и некоторые другие металлы, а вместо серной кислоты – некоторые другие разбавленные кислоты. Образующийся водород собирают в пробирку методом вытеснения воды (см. рис. 10.2 б) или просто в перевернутую колбу (рис. 10.2 а).
В промышленности в больших количествах водород получают из природного газа (в основном это метан) при взаимодействии его с парами воды при 800 °С в присутствии никелевого катализатора:
CH4 + 2H2O = 4H2 +CO2 (t, Ni)
или обрабатывают при высокой температуре парами воды уголь:
2H2O + С = 2H2 + CO2. (t)
Чистый водород получают из воды, разлагая ее электрическим током (подвергая электролизу):
2H2O = 2H2+ O2(электролиз).
Гидри́ды — соединения водорода с металлами и с имеющи мименьшую электроотрицательность, чем водород, неметаллами. Иногда к гидридам причисляют соединения всех элементов с водородом.
Классификация
В зависимости от характера химической связи водорода с другими химическими элементами различают три типа гидридов:
ионные гидриды (солеобразные гидриды);
металлические гидриды;
ковалентные гидриды.
К ионным гидридам относятся соединения водорода с щелочными и щёлочноземельными металлами. Ионные гидриды — это вещества белого цвета, устойчивые при нормальных условиях, но разлагающиеся при нагревании на металл и водород без плавления, исключение составляют LiH и CaH2, которые плавятся без разложения и при дальнейшем нагревании разлагаются.
Металлические гидриды — это соединения переходных металлов, в большинстве случаев являются бертоллидами. По сути являются твёрдым раствором водорода в металле, атомы водорода внедряются в кристаллическую решётку металла.
К ковалентным гидридам относятся гидриды, образованные неметаллами, например, метан CH4 и силан SiH4.
Химические свойства:
Взаимодействие ионных гидридов с водой:
NaH
+ H2O = NaOH + H2
CaH2 + 2H2O = Ca(OH)2 + 2H2
Взаимодействие с оксидами металлов:
2CaO + CaH2 = 2Ca + Ca(OH)2
Термическое разложение{\displaystyle {\mathsf {2NaH\longrightarrow 2Na+H_{2}\uparrow }}}:
2LiH = 2Li + H2
Взаимодействие с азотом{\displaystyle {\mathsf {3CaH_{2}+N_{2}\longrightarrow Ca_{3}N_{2}+3H_{2}}}}:
3CaH2 + N2 = Ca3N2 + 3H2
Получение
Ионные гидриды получают взаимодействием простых веществ:
2Na + H2 = 2NaH
Молекулярный ион водорода — простейший двухатомный ион H2+, образуется при ионизации молекулы водорода. В молекулярном ионе H2+ образуется одноэлектронная химическая связь. Молекулярный ион водорода H2+ содержит два протона, заряженных положительно, и один электрон, заряженный отрицательно.
Гидроксоний (оксоний, гидроний) H3O+— комплексный ион, соединение протона с молекулой воды.
Водородные ионы в водных и спиртовых растворах кислот существуют в виде гидратированных или сольватированных ионов гидроксония. Для измерения концентрации водородных ионов используется водородный электрод. Ион гидроксония был обнаружен также в газовой фазе. Этот катион часто используется для представления природы протонов в водном растворе
Стандартная энтропия иона гидроксония составляет 192,25 Дж/(моль·K). {\displaystyle {\mathsf {2Na+H_{2}\longrightarrow 2\ NaH}}}