
- •1.Введение. Предмет дисциплины, цель изучения, основные определения
- •2.Металлы и сплавы, общие сведения. Строение металлов.
- •3.Электрофизические характеристики металлов.
- •4.Проводимость жидкостей и электролитов. Жидкости.
- •5.Классификация материалов.
- •6.Виды химической связи.
- •7.Строение реальных металлов, диффузионные процессы в металле, кристаллизация металлов.
- •8.Конструкционные стали.
- •12.Испытания конструкционных металлов. Микроскопический анализ.
- •13.Механические свойства материалов и методы их определения.
- •14.Метод Бринелля.
- •15.Метод Роквелла.
- •16.Метод Виккерса.
- •18.Метод Шора.
- •19.Испытание на усталость.
- •20.Испытание на ползучесть.
- •21.Определение ударной вязкости.
- •22. Порог хладноломкости. Определение трещиностойкости.
- •23.Электротехнические материалы, классификация и область применения.
- •24.Особенности зонно-энергетической структуры металлов.
- •25.Физическая природа электропроводности металлов
- •26.Факторы, влияющие на удельное сопротивление металлов
- •27.Электрические свойства металлических сплавов
- •28.Сопротивление проводников на высоких частотах
- •29.Электрофизические свойства тонких металлических пленок
- •31.Классификация проводниковых материалов по функциональному значению.
- •32.Контактные материалы
- •37.Криопроводники.
- •39.Магнитные материалы. Общие сведения о магнетизме
- •40.Классификация веществ по магнитным свойствам
- •41.Техническая кривая намагничивания
- •42.Петля гистерезиса
- •43.Магнитная проницаемость
- •44. Магнитострикция.
- •45. Намагничивание переменным полем.
- •46. Классификация магнитных материалов.
- •48. Магнитомягкие материалы.
- •49. Магнитомягкие высокочастотные материалы
- •50. Магнитотвердые материалы
- •51. Магнитные материалы специального назначения. Ферриты и металлические сплавы с ппг.
- •52. Ферриты для устройств свч.
- •53. Цилиндрические магнитные домены
- •54. Диэлектрики. Поляризация диэлектриков
- •55. Электропроводность диэлектриков. Особенности электропроводности диэлектриков.
- •56. Электропроводность твердых диэлектриков
- •57. Поверхностная электропроводность твердых диэлектриков.
- •58. Электропроводность жидких диэлектриков
- •59. Электропроводность газов.
- •60. Диэлектрические потери.
- •61. Пробой диэлектриков. Основные понятия.
- •62. Пробой твердых диэлектриков
- •63. Электроизоляционные материалы. Высоко полимерные твердые материалы.
- •64. Синтетические лаки, эмали и компаунды.
- •65. Бумаги и картоны
- •66. Слоистые пластмассы – материалы для печатных плат.
- •67. Слюдяные материалы
- •68. Электроизоляционная керамика
- •69. Активные диэлектрики
- •70. Пьезоэлектрики
- •71. Пироэлектрики
- •72. Электреты
- •73. Материалы для твердотельных лазеров
- •74. Жидкие кристаллы
- •75. Полупроводниковые материалы.
- •76. Электропроводность полупроводников.
- •77. Собственные и примесные полупроводники. Основные и не основные носители заряда.
- •78. Основные характеристики и свойства полупроводниковых материалов.
- •79. Конецентрация носителей заряда.
- •80. Подвижность носителей тока.
- •81. Теплопроводность полупроводников.
- •82. Зависимость концентрации носителей заряда от температуры. Элементы статистики электронов.
- •83. Фотопроводимость.
18.Метод Шора.
Измеряется глубина вдавливания в материал определенного индентора под действием силы в заданных условиях. Твердость при вдавливании обратно пропорциональна глубине вдавливания и зависит от модуля упругости и вязкоэластичных свойств материала. На получаемые результаты влияет форма индентора и прилагаемая к нему сила, поэтому между результатами, получаемыми при испытаниях с дюрометрами разных типов или другими приборами для измерения твердости, не может быть прямой зависимости. Твёрдость по Шору — метод определения твёрдости очень твёрдых материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк (осн. часть склероскопа Шора), свободно и вертикально падающий с определённой высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка.
19.Испытание на усталость.
Усталостное разрушение металлов происходит в условиях повторяющихся знакопеременных напряжений, значения которых меньше предела прочности. Этот процесс постепенного разрушения — усталость — заключается в том, что под действием большого числа циклов переменных нагрузок в наиболее нагруженном или ослабленном месте металла зарождается, а затем растет трещина, следовательно, площадь сплошного металла постепенно уменьшается, а напряжения возрастают, поскольку а = P/F, при постоянной нагрузке Р уменьшение площади F приводит к росту напряжений а. Наступает момент, когда оставшаяся неповрежденной часть сечения уже не может выдержать приложенной нагрузки, так как действующие напряжения превысили предел прочности (т.е. а > ав), поэтому происходит быстрое разрушение металла. Свойство материала противостоять усталости называется выносливостью. Наибольшее напряжение, которое выдерживает металл без разрушения при повторении заранее заданного числа циклов, называют пределом выносливости. Испытание на усталость чаще всего проводят на вращающемся образце с приложением постоянной изгибающей нагрузки. Напряжения в каждой точке образца за один оборот изменяются от положительных(растяжение) до отрицательных (сжатие), т.е. меняются по закону синусоиды. При таком нагружении отношение максимальной и минимальной величин напряжений равно -1. Испытания выполняются следующим образом. При заданном напряжении определяется количество циклов до разрушения, полученное значение наносится на график п — а, где п — число циклов. В результате получают кривую усталости. Как видно на этой кривой, существует напряжение, которое вообще не вызывает разрушения, это и есть предел выносливости, т. е. при напряжениях ниже, чем а деталь может работать сколь угодно долго.
20.Испытание на ползучесть.
Метод определения поведения материала при ползучести или уменьшении напряжения. Для определения свойств ползучести материал подвергается длительным постоянным нагрузкам при растяжении или сжатии при постоянной повышенной температуре. Деформация регистрируется в определенные интервалы времени, строится диаграмма зависимости ползучести от времени. Уклон кривой в любой точке - это коэффициент ползучести. При разрушении испытание останавливается и регистрируется время разрыва. Если образец не подвергается разрушения в установленное для испытания время, можно определить степень упругого восстановления при ползучести. Для того, чтобы определить уменьшение напряжения в материале, образец деформируется до определенной степени, уменьшение напряжения регистрируется в течение длительного периода времени при постоянной повышенной температуре. Стандартные процедуры испытания на ползучесть даны в стандартах ASTM E-139, ASTM D-2990 и D-2991 (пластмассы) и ASTM D-2294 (адгезивы).