
- •1.Введение. Предмет дисциплины, цель изучения, основные определения
- •2.Металлы и сплавы, общие сведения. Строение металлов.
- •3.Электрофизические характеристики металлов.
- •4.Проводимость жидкостей и электролитов. Жидкости.
- •5.Классификация материалов.
- •6.Виды химической связи.
- •7.Строение реальных металлов, диффузионные процессы в металле, кристаллизация металлов.
- •8.Конструкционные стали.
- •12.Испытания конструкционных металлов. Микроскопический анализ.
- •13.Механические свойства материалов и методы их определения.
- •14.Метод Бринелля.
- •15.Метод Роквелла.
- •16.Метод Виккерса.
- •18.Метод Шора.
- •19.Испытание на усталость.
- •20.Испытание на ползучесть.
- •21.Определение ударной вязкости.
- •22. Порог хладноломкости. Определение трещиностойкости.
- •23.Электротехнические материалы, классификация и область применения.
- •24.Особенности зонно-энергетической структуры металлов.
- •25.Физическая природа электропроводности металлов
- •26.Факторы, влияющие на удельное сопротивление металлов
- •27.Электрические свойства металлических сплавов
- •28.Сопротивление проводников на высоких частотах
- •29.Электрофизические свойства тонких металлических пленок
- •31.Классификация проводниковых материалов по функциональному значению.
- •32.Контактные материалы
- •37.Криопроводники.
- •39.Магнитные материалы. Общие сведения о магнетизме
- •40.Классификация веществ по магнитным свойствам
- •41.Техническая кривая намагничивания
- •42.Петля гистерезиса
- •43.Магнитная проницаемость
- •44. Магнитострикция.
- •45. Намагничивание переменным полем.
- •46. Классификация магнитных материалов.
- •48. Магнитомягкие материалы.
- •49. Магнитомягкие высокочастотные материалы
- •50. Магнитотвердые материалы
- •51. Магнитные материалы специального назначения. Ферриты и металлические сплавы с ппг.
- •52. Ферриты для устройств свч.
- •53. Цилиндрические магнитные домены
- •54. Диэлектрики. Поляризация диэлектриков
- •55. Электропроводность диэлектриков. Особенности электропроводности диэлектриков.
- •56. Электропроводность твердых диэлектриков
- •57. Поверхностная электропроводность твердых диэлектриков.
- •58. Электропроводность жидких диэлектриков
- •59. Электропроводность газов.
- •60. Диэлектрические потери.
- •61. Пробой диэлектриков. Основные понятия.
- •62. Пробой твердых диэлектриков
- •63. Электроизоляционные материалы. Высоко полимерные твердые материалы.
- •64. Синтетические лаки, эмали и компаунды.
- •65. Бумаги и картоны
- •66. Слоистые пластмассы – материалы для печатных плат.
- •67. Слюдяные материалы
- •68. Электроизоляционная керамика
- •69. Активные диэлектрики
- •70. Пьезоэлектрики
- •71. Пироэлектрики
- •72. Электреты
- •73. Материалы для твердотельных лазеров
- •74. Жидкие кристаллы
- •75. Полупроводниковые материалы.
- •76. Электропроводность полупроводников.
- •77. Собственные и примесные полупроводники. Основные и не основные носители заряда.
- •78. Основные характеристики и свойства полупроводниковых материалов.
- •79. Конецентрация носителей заряда.
- •80. Подвижность носителей тока.
- •81. Теплопроводность полупроводников.
- •82. Зависимость концентрации носителей заряда от температуры. Элементы статистики электронов.
- •83. Фотопроводимость.
4.Проводимость жидкостей и электролитов. Жидкости.
Современные представления о проводимости диэлектрических жидкостей состоят в следующем. Здесь носителями заряда являются ионы, т.к. электроны легко прилипают к нейтральным молекулам жидкости и не могут существовать в свободном состоянии. Кроме того, в жидкости заряды могут переноситься молионами, частицами и даже пузырьками. Ионизация облегчена по сравнению с газами за счет большей диэлектрической проницаемости, ибо высота потенциального барьера (энергия ионизации) понижена примерно в e раз. Это можно показать рассматривая кулоновскую энергию взаимодействия двух зарядов +e и -e, разошедшихся на расстояние r. W= e2/(4p·e0e·r). Рекомбинация носителей заряда в жидкости затруднена, поскольку заряды легко окружаются соседними молекулами, ориентированными соответствующими концами постоянных или индуцированных диполей к ионам. Эффект взаимодействия со средой называется сольватацией. Подвижность, связанная с движением жидкости, называется электрогидродинамической подвижностью. Она составляет m эгд ~ (10-7 - 10-8) м2/Вc., т.е. на три-четыре порядка меньше подвижности ионов в газах. Оценка для вышеприведенного примера с диссоциацией примеси с учетом ЭГД подвижности дает s ~10-9 Cм/м.Таким образом, в жидкостях обычно проводимость больше, чем в газах и твердых телах за счет облегченной ионизации и затрудненной рекомбинации. С другой стороны, отсутствие формы жидкости, легкость очистки дают возможность уменьшения электропроводности, что невозможно сделать с твердыми диэлектриками. В настоящее время существуют несколько новых технологий очистки жидкостей, например электродиализ, благодаря которым некоторые жидкости очищали до проводимости, не хуже лучших образцов твердых диэлектриков, типа янтаря, s ~ 10-19 Ом м.Еще необходимо рассмотреть электропроводность электролитов. В энергетике они применяются, в основном, в аккумуляторах. Кроме того, естественные электролиты обеспечивают электропроводность в системах заземления энергетических объектов. Дело в том, что земля имеет преимущественно электролитический характер электропроводности. При этом, наиболее важным видом электролитов являются водные электролиты, т.к. вода признается самым распространенным жидким веществом, она считается самым сильным растворителем и самой сильной ионизирующей средой.В электролитах заряды появляются в жидкости за счет электролитической диссоциации молекул на ионы. Условно все вещества, растворенные в жидкости и частично диссоциирующие на ионы, делят на два типа: сильные электролиты и слабые. Сильные электролиты - вещества полностью диссоциирующие на ионы. Это соли типа NaCl, сильные кислоты типа HCl. Слабые электролиты - малодиссоциирующие вещества, т.е. они растворяются в виде молекул, только малая часть молекул диссоциирует на ионы. Пример - спирты, органические кислоты (например, уксусная кислота). Число ионов зависит от концентрации растворенных веществ. Подвижность ионов в электролитах невелика, обычно она составляет порядка 10-8 м2/(В·с).За счет большой растворяющей способности воды, обычно электропроводность влажных сред оказывается достаточно великой, т.к. растворенные вещества зачастую содержат сильно диссоциирущие соли.