
- •1.Введение. Предмет дисциплины, цель изучения, основные определения
- •2.Металлы и сплавы, общие сведения. Строение металлов.
- •3.Электрофизические характеристики металлов.
- •4.Проводимость жидкостей и электролитов. Жидкости.
- •5.Классификация материалов.
- •6.Виды химической связи.
- •7.Строение реальных металлов, диффузионные процессы в металле, кристаллизация металлов.
- •8.Конструкционные стали.
- •12.Испытания конструкционных металлов. Микроскопический анализ.
- •13.Механические свойства материалов и методы их определения.
- •14.Метод Бринелля.
- •15.Метод Роквелла.
- •16.Метод Виккерса.
- •18.Метод Шора.
- •19.Испытание на усталость.
- •20.Испытание на ползучесть.
- •21.Определение ударной вязкости.
- •22. Порог хладноломкости. Определение трещиностойкости.
- •23.Электротехнические материалы, классификация и область применения.
- •24.Особенности зонно-энергетической структуры металлов.
- •25.Физическая природа электропроводности металлов
- •26.Факторы, влияющие на удельное сопротивление металлов
- •27.Электрические свойства металлических сплавов
- •28.Сопротивление проводников на высоких частотах
- •29.Электрофизические свойства тонких металлических пленок
- •31.Классификация проводниковых материалов по функциональному значению.
- •32.Контактные материалы
- •37.Криопроводники.
- •39.Магнитные материалы. Общие сведения о магнетизме
- •40.Классификация веществ по магнитным свойствам
- •41.Техническая кривая намагничивания
- •42.Петля гистерезиса
- •43.Магнитная проницаемость
- •44. Магнитострикция.
- •45. Намагничивание переменным полем.
- •46. Классификация магнитных материалов.
- •48. Магнитомягкие материалы.
- •49. Магнитомягкие высокочастотные материалы
- •50. Магнитотвердые материалы
- •51. Магнитные материалы специального назначения. Ферриты и металлические сплавы с ппг.
- •52. Ферриты для устройств свч.
- •53. Цилиндрические магнитные домены
- •54. Диэлектрики. Поляризация диэлектриков
- •55. Электропроводность диэлектриков. Особенности электропроводности диэлектриков.
- •56. Электропроводность твердых диэлектриков
- •57. Поверхностная электропроводность твердых диэлектриков.
- •58. Электропроводность жидких диэлектриков
- •59. Электропроводность газов.
- •60. Диэлектрические потери.
- •61. Пробой диэлектриков. Основные понятия.
- •62. Пробой твердых диэлектриков
- •63. Электроизоляционные материалы. Высоко полимерные твердые материалы.
- •64. Синтетические лаки, эмали и компаунды.
- •65. Бумаги и картоны
- •66. Слоистые пластмассы – материалы для печатных плат.
- •67. Слюдяные материалы
- •68. Электроизоляционная керамика
- •69. Активные диэлектрики
- •70. Пьезоэлектрики
- •71. Пироэлектрики
- •72. Электреты
- •73. Материалы для твердотельных лазеров
- •74. Жидкие кристаллы
- •75. Полупроводниковые материалы.
- •76. Электропроводность полупроводников.
- •77. Собственные и примесные полупроводники. Основные и не основные носители заряда.
- •78. Основные характеристики и свойства полупроводниковых материалов.
- •79. Конецентрация носителей заряда.
- •80. Подвижность носителей тока.
- •81. Теплопроводность полупроводников.
- •82. Зависимость концентрации носителей заряда от температуры. Элементы статистики электронов.
- •83. Фотопроводимость.
23.Электротехнические материалы, классификация и область применения.
Электротехнические материалы (ЭТМ) являются одним из определяющих факторов технико-экономических показателей любой системы электроснабжения. Основные материалы, которые используются в энергетике, можно разделить на несколько классов - это проводниковые материалы, магнитные материалы и диэлектрические материалы. Общим для них является то, что они эксплуатируются в условиях действия напряжения, а значит и электрического поля. Проводниковыми называют материалы, основным электрическим свойством которых является сильно выраженная по сравнению с другими электротехническими материалами электропроводность. Их применение в технике обусловлено в основном этим свойством, определяющим высокую удельную электрическую проводимость при нормальной температуре. В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы. К жидким проводникам относятся расплавленные металлы и различные электролиты. Однако для большинства металлов температура плавления высока, и только ртуть, имеющая температуру плавления около минус 39 °С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками при повышенных температурах. Газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы. Важнейшими для электротехники свойствами проводниковых материалов являются их электро- и теплопроводность, а также способность генерации термоЭДС. Электропроводность характеризует способность вещества проводить электрический ток. Механизм прохождения тока в металлах обусловлен движением свободных электронов под воздействием электрического поля. Полупроводниковыми называют материалы, которые являются по своей удельной проводимости промежуточными между проводниковыми и диэлектрическими материалами и отличительным свойством которых является исключительно сильная зависимость удельной проводимости от концентрации и вида примесей или других дефектов, а также в большинстве случаев от внешних энергетических воздействий (температуры, освещенности и т. п.). К полупроводникам относится большая группа веществ с электронной электропроводностью, удельное сопротивление которых при нормальной температуре больше, чем у проводников, но меньше, чем у диэлектриков, и находится в диапазоне от 10-4 до 1010 Ом•см. В энергетике полупроводники напрямую мало используются, но электронные компоненты на основе полупроводников используются достаточно широко. Это любая электроника на станциях, подстанциях, диспетчерских управлениях, службах и т.п. Выпрямители, усилители, генераторы, преобразователи. Также из полупроводников на основе карбида кремния изготавливают нелинейные ограничители перенапряжений в линиях электропередачи (ОПН). Диэлектрическими называют материалы, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводимость и чем слабее у него выражены замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением тепла. Поляризацией диэлектрика называют возникновение в нем при внесении во внешнее электрическое поле макроскопического собственного электрического поля, обусловленного смещением заряженных частиц, входящих в состав молекул диэлектрика. Диэлектрик, в котором возникло такое поле, называетсяполяризованным. Магнитными называют материалы, предназначенные для работы в магнитном поле при непосредственном взаимодействии с этим полем. Магнитные материалы делят на слабомагнитные и сильномагнитные. К слабомагнитным относят диамагнетики и парамагнетики. К сильномагнитным – ферромагнетики, которые, в свою очередь, могут быть магнитомягкими и магнитотвердыми.Композиционные материалы – это материалы, состоящие из нескольких компонент, выполняющих разные функции, причем между компонентами существуют границы раздела. Используют для изготовления электрических машин, аппаратов и приборов, для сооружения электрических установок и монтажа электрических линий.