
- •1. .Понятие числового поля и матрицы над полем р.
- •2. Доказать, что любая транспозиция меняет характер четности перестановки. Определение Определителя n-ого порядка.
- •3. Теорема о равноправности строк и столбцов матрицы определителя.
- •4. Теорема о перестановке 2х строк матрицы оределителя. Определитель с двумя одинаковыми строками.
- •5. Теорема об умножении некоторой строки матрицы определителя на одно и то же число. Определитель с двумя пропорциональными строками.
- •6. Теорема о разложении определителя на сумму определителей и следствия из нее.
- •7. Теорема о разложении определителя по элементам строки(столбца) и следствия из неё.
- •8. Операции над матрицами и их свойства. Доказать одно из них.
- •9.Операция транспонирования матрицы и её свойства.
- •10. Определение обратной матрицы. Доказать что у каждой обратимой матрицы существует лишь одно обращение.
- •13. Блочные матрицы. Сложение и умножение блочных матриц. Теорема об определителе квазитреугольной матрицы.
- •14. Теорема об определителе произведения матриц.
- •15. Теорема о существовании обратной матрицы.
- •16.Определение ранга матрицы. Теорема о базисном миноре и следствие из неё.
- •17. Понятие о линейной зависимости строк и столбцов матрицы. Теорема о ранге матрицы.
- •18. Методы вычисления ранга матрицы: метод окаймляющих миноров, метод элементарных преобразований.
- •19. Применение элементарных преобразований только строк(только столбцов) к отысканию обратной матрицы.
- •20. Системы линейных уравнений. Критерий совместности и критерий определенности.
- •21. Решение совместной системы линейных уравнений.
- •22. Однородные системы линейных уравнений. Теорема о существовании фундаментальной системы решений.
- •23. Линейные операции над векторами и их свойства. Доказать одно из них.
- •24. Определение разности двух векторов. Доказать что для любых векторов иразностьсуществует и единственна.
- •25. Определение базиса, координаты вектора в базисе. Теорема о разложении вектора по базису.
- •26. Линейная зависимость векторов. Свойства понятия линейной зависимости, доказать одно из них.
- •28. Декартовы системы координат в пространстве, на плоскости и на прямой. Теорема о линейной комбинации векторов и следствия из нее.
- •29. Вывод формул выражающих координаты точки в одной дск через координаты этой же точки в другой дск.
- •30. Скалярное произведение векторов. Определение и основные свойства.
- •31. Векторное произведение векторов. Определение и основные свойства.
- •32. Смешанное произведение векторов. Определение и основные свойства.
- •33. Двойное векторное произведение векторов. Определение и формула для вычисления( без доказательства).
- •34. Алгебраические линии и поверхности. Теоремы об инвариантности( неизменности) порядка.
- •35. Общие уравнения плоскости и прямой.
- •36. Параметрические уравнения прямой и плоскости.
- •37. Переход от общих уравнений плоскости и прямой на плоскости к их параметрическим уравнениям. Геометрический смысл коэффициентов а,в,с (а,в) в общем уравнении плоскости(прямой на плоскости).
- •38. Исключение параметра из параметрических уравнений на плоскости( в пространстве), канонические уравнения прямой.
- •39. Векторные уравнения прямой и плоскости.
- •40. Общие уравнения прямой в пространстве, приведение к каноническому виду.
- •41. Расстояние от точки до плоскости. Расстояние от точки до прямой. Другие задачи о прямых и плоскостях.
- •42. Определение эллипса. Каноническое уравнение эллипса. Параметрические уравнения эллипса. Эксцентриситет эллипса.
- •44. Определение параболы. Вывод канонического уравнения параболы.
- •45. Кривые второго порядка и их классификация. Основная теорема о квп.
- •45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.
- •47.Определение линейного пространства. Примеры.
- •49. Определение Евклидова пространства. Длина вектора. Угол между векторами. Неравенство Коши-Буняковского. Пример.
- •50. Определение евклидова пространства. Теорема Пифагора. Неравенство треугольникаю Пример.
3. Теорема о равноправности строк и столбцов матрицы определителя.
Теорема: Определитель порожденный матрицей не изменится если в ней поменять местами строки со столбцами.
Доказательство: А) Определим вначале знак члена определителя при произвольном порядке сомножителей.
aα1, β1, aα2, β2… aαk, βk… aαl, βl… aαn, βn (*)
α1, α2… αk… αl ...αn (1) – перестановка номеров строк.
β1, β2… βk… βl ...βn (1’) – перестановка индексов столбцов.
Обозначим число инверсий в перестановке (1) – S1, в перестановке (1’) – S1’. Рассмотрим сумму S1+ S1’, и покажем, что четность или нечетность этой суммы не меняется ни при каком изменении порядка множителей. Ясно что от одного порядка множителей к другому можно перейти с помощью конечного числа транспозиций множества. Поэтому достаточно доказать, что характер четности числа S1+ S1’ не изменится при одной транспозиции множества в произведении(*).
aα1, β1, aα2, β2… aαl, βl… aαk, βk… aαn, βn (**)
α1, α2… αl… αk ...αn (2)
β1, β2… βl… βk ...βn (2’)
Число инверсий в перестановке (2) – S2, в перестановке(2’) - S2’. Рассмотрим число S2+S2’. S1 и S2 имеют разный характер четности. S1’ и S2’ имеют разный характер четности следовательно суммы S1+ S1’ и S2+S2’ имеют одинаковый характер четности. Напишем множители рассматриваемого члена определителя (*) в порядке следования строк: a1, j1, a2, j2…an, jn (3).
Обозначим число инверсий столбцов через S, число инверсий в перестановке строк =0. Таким образом по доказанному числа 0+S и S1+S1’ имеют одинаковый характер четности. Следовательно, знак члена определителя (*):
(-1)S=(-1)S1+S1’
В)
Рассмотрим произвольный член определителя D: aα1, β1, aα2, β2… aαn, βn - он будет и членом определителя D1, т.к. в нем в качестве множителя взят один и только один элемент из каждой строки и столбца матрицы определителя D1(в D первые индексы – номера строк, вторые – номера столбцов, а в определителе D1 – наоборот).
Покажем что знаки этого члена, как в D , так и в D1 будут одинаковы. Это следует из того что знаки этого члена и в D и в D1 определяются суммой числа инверсий в перестановках первых и вторых индексов. D=D1 .(ч.т.д.)
4. Теорема о перестановке 2х строк матрицы оределителя. Определитель с двумя одинаковыми строками.
Теорема: Если в матрице определителя поменять местами 2 строки, то определитель изменит знак на противоположный.
Доказательство:
a1, γ1*a2, γ2*…*ak, γk*…*al, γl*…*an, γn – член определителя D, он будет и членом определителя D1, но знак его здесь будет противоположный.
Знак этого члена определителя в D: γ1,γ2…γk…γl…γn (1)
А в D1: a1, γ1*a2, γ2*…* al, γl *…* ak, γk *…*an, γn
γ1,γ2…γl…γk…γn (2)
Перестановки (1) и (2) отличаются одной транспозицией, значит характер четности этих перестановок разный. Следовательно рассматриваемый член в D и в D1 имеет разные знаки. Следовательно D= – D1.(ч.т.д.)
Следствие: Определитель с двумя одинаковыми строками равен 0.
Доказательство:
Допустим в матрице определителя D
две одинаковые строки. Поменяем местами
эти две одинаковые строки. Определитель
соответствующий новой матрице обозначим
D1.
Согласно доказанной теореме
D=
– D1.
Но т.к. мы поменяли две одинаковые строки
и матрица не изменилась, следовательно,
D=D1.
Получаем
иD=0.(ч.т.д.)