
- •1 Основные направления искусственного интеллекта.
- •1.1 История развития искусственного интеллекта
- •1.2 Современное состояние искусственного интеллекта.
- •1.3 Классификация систем искусственного интеллекта.
- •1.3.1 Системы с интеллектуальным интерфейсом
- •1.3.2 Экспертные системы
- •1.3.3 Самообучающиеся системы
- •1.3.4 Адаптивные системы
- •1.4 Характеристики знаний.
- •1.5 Модели представления знаний.
- •2 Логическое программирование и аксиоматические системы.
- •2.1 Общие положения
- •2.2 Исчисление высказываний.
- •2.2.1 Понятие высказывания
- •2.2.2 Алфавит исчисления высказываний
- •2.2.3 Правила построения формул
- •2.2.4 Интерпретация формул
- •2.2.5 Определение логического следствия
- •2.2.6 Система аксиом исчисления высказываний
- •2.2.7 Правила вывода исчисления высказываний
- •2.3 Исчисление предикатов первого порядка.
- •2.3.1 Основные определения
- •2.3.2 Правила построения формул в исчислении предикатов
- •2.3.3 Интерпретация формул в логике предикатов первого порядка.
- •2.3.4 Системы аксиом логики предикатов.
- •2.3.5 Правила вывода в исчислении предикатов.
- •2.3.6 Законы эквивалентных преобразований логики предикатов.
- •2.3.7 Теоремы о логическом следствии
- •2.3.8 Предваренные (пренексные) нормальные формы исчисления предикатов.
- •2.4 Автоматизация доказательства в логике предикатов.
- •2.4.1 История вопроса
- •2.4.2 Скулемовские стандартные формы.
- •2.4.3 Метод резолюций в исчислении высказываний.
- •2.4.4 Правило унификации в логике предикатов.
- •2.4.5 Метод резолюций в исчислении предикатов
- •3 Введение в язык логического программирования пролог
- •3.1 Теоретические основы
- •3.2 Основы языка программирования Пролог
- •3.2.1 Общие положения
- •3.2.2 Использование дизъюнкции и отрицания
- •3.2.3 Унификация в Прологе
- •3.2.4 Правила унификации
- •3.2.5 Вычисление цели. Механизм возврата
- •3.2.6 Управление поиском решения
- •3.2.7 Процедурность Пролога
- •3.2.8 Структура программ Пролога
- •3.2.9 Использование составных термов
- •3.2.10 Использование списков
- •3.2.11 Поиск элемента в списке
- •3.2.12 Объединение двух списков
- •3.2.13 Определение длины списка
- •3.2.14 Поиск максимального и минимального элемента в списке
- •3.2.15 Сортировка списков
- •3.2.16 Компоновка данных в список
- •3.2.17 Повторение и рекурсия в Прологе
- •3.2.18 Механизм возврата
- •3.2.19 Метод возврата после неудачи
- •3 2 19 Метод повтора, использующий бесконечный цикл
- •3.2.20 Методы организации рекурсии
- •3.2.21 Создание динамических баз данных
- •3 2 22 Использование строк в Прологе.
- •3.2.23 Преобразование данных в Прологе
- •3.2.24 Представление бинарных деревьев
- •Представление графов в языке Пролог
- •Поиск пути на графе.
- •Метод “образовать и проверить”
- •4 Основные стратегии решения задач. Поиск решения в пространстве состояний
- •4.1 Понятие пространства состояния
- •Основные стратегии поиска решений
- •4.2.1 Поиск в глубину
- •4.2.2 Поиск в ширину
- •Сведение задачи к подзадачам и и/или графы.
- •Решение игровых задач в терминах и/или- графа
- •Минимаксный принцип поиска решений
- •5 Введение в экспертные системы
- •5.1 Основные понятия
- •5.2 Проектирование экспертных систем
- •5.3 Типы решаемых задач
- •5.4 Инструментальные средства разработки экспертных систем
- •5.5 Нечёткие знания в экспертных системах
- •5.6 Продукционные правила для представления знаний.
- •5.7 Формирование ответа на вопрос «почему»
- •5.8 Формирование ответа на вопрос «как»
- •5.9 Работа с неопределенностью
1.3 Классификация систем искусственного интеллекта.
Для систем искусственного интеллекта характерны следующие признаки [2]:
развитые коммуникативные способности;
умение решать сложные задачи;
способность к самообучению;
адаптивность.
В соответствии с данными признаками, системы искусственного интеллекта, можно разделить на классы, представленные на рис.1.1 [2].
Рис.1.1 Классификация систем искусственного интеллекта
1.3.1 Системы с интеллектуальным интерфейсом
Базы знаний (БЗ)позволяют в отличии от традиционных баз данных (БД) обеспечивать выборку необходимой информации, не хранимой явно, а выводимой из совокупности хранимых данных.
Естественно-языковые интерфейсыприменяются для доступа к БЗ, контекстного поиска текстовой информации, голосового ввода команд, машинного перевода с иностранных языков.
Гипертекстовые системыиспользуются для реализации поиска по ключевым словам в БД с текстовой информацией.
Системы контекстной помощиявляются частным случаем гипертекстовых систем и естественно-языковых систем. В отличие от них пользователь сам описывает проблему, а система выполняет поиск относящихся к ситуации рекомендаций.
Системы когнитивной графикиориентированы на общение с пользователем посредством графических образов, которые генерируются в соответствии с изменениями параметров моделируемых или наблюдаемых процессов.
1.3.2 Экспертные системы
Область исследования ЭС называется инженерией знаний.Экспертные системы предназначены для решения неформализованных задач, то есть задач, решаемых с помощью неточных знаний, которые являются результатом обобщения многолетнего опыта работы и интуиции специалистов. Неформализованные знания обычно представляют собой эвристические приемы и правила. ЭС обладают следующими особенностями:
алгоритм решения не известен заранее, а строится самой ЭС с помощью символических рассуждений, базирующихся на эвристических приемах;
ясность полученных решений, то есть система «осознает» в терминах пользователя, как она получает решение;
способность анализа и объяснения своих действий и знаний;
способность приобретения новых знаний от пользователя-эксперта, не знающего программирования, и изменения в соответствии с ними своего поведения;
обеспечение «дружественного», как правило, естественно-языкового интерфейса с пользователем.
ЭС охватывают самые разные предметные области, среди которых преобладают медицина, бизнес, производство, проектирование и системы управления.
Классифицирующие ЭСрешают задачи распознавания ситуаций. Основным методом формирования решений в них является дедуктивный логический вывод.
Доопределяющие ЭС используются для решения задач с не полностью определенными данными и знаниями. В качестве методов обработки неопределенных знаний могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика.
Трансформирующие ЭСреализуют преобразование знаний в процессе решения задачи. В ЭС данного класса используются различные способы обработки знаний:
генерация и проверка гипотез;
логика предположений и умолчаний;
использование метазнаний для устранения неопределенности.
Мультиагентные системы – это динамические ЭС, основанные на интеграции разнородных источников знаний, которые обмениваются между собой полученными результатами в процессе решения задач. Системы данного класса имеют следующие возможности:
реализация альтернативных рассуждений;
распределённое решение проблем, разделяемое на параллельно решаемые подзадачи;
применение различных стратегий вывода заключений;
обработка больших массивов информации из БД;
использование математических моделей и внешних процедур для имитации развития ситуаций.