
- •1.Оптический сигнал и оптическая система
- •2.Интерференция в диффузном свете. Спекл-интерферометрия. Опыт Берча-Токарского
- •3.Оптика спеклов Основные свойства спекл-картины, условия формирования
- •4.Нормально развитая спекл-картина, условия ее наблюдения, контраст спекл-картины, индивидуальный спекл
- •8.Учет дискретности спектра подсвечивающего излучения и направления подсвета
- •9.Многомодовый режим излучения лазера.
- •10.Дифракция частично когерентного излучения на отверстии
- •11. Примеры. Основные свойства преобразования Фурье
- •14.Трансляционная симметрия дифракционной картины
- •17.Обобщенные функции. Свертка. Функция корреляции.
- •21.Распространение взаимной когерентности.
- •23.Пример: Дифракция частично когерентного излучения на щели . Пример: Дифракция частично когерентного излучения на щели
- •24.Фурье-образы наиболее часто встречающихся в оптике двумерных сигналов и их свойства
- •25.Типы оптических систем
- •26.Единство и различие явлений дифракция и интерференция
- •27.Временная когерентность излучения лазера
- •28.Пространственная фильтрация
- •29.Оптический сигнал и его преобразование
- •30.Оптика винтовых полей или сингулярная оптика
- •31.Наиболее часто встречающиеся в оптике специальные функции в связи с применением теории систем и преобразований
- •33.Представление поля в дальней зоне через интеграл Фурье
- •36.Когерентность лазерного излучения
- •37.Оптические системы, операторы, функционалы.
- •38.Основные свойства преобразования Фурье
- •39.Принцип неопределенности в теории оптического сигнала
- •40.Предельная пространственная когерентность излучения одномодового лазера
- •41.Ограничение разрешающей способности оптической системы и информационной емкости оптических сигналов
- •42.Когерентное поле, некогерентное поле
- •43.Квантовая природа электромагнитного излучения
- •44.Контраст дифракционной картины
- •45. Свойства симметрии дифракционной картины
- •46.Квантовая природа электромагнитного излучения.
- •47.Корреляционные функции и когерентность излучения
- •48.Разрешающая сила оптической системы в классическом рассмотрении
- •49.Квантовомеханическая модель дифракции монохроматического излучения на щели
- •50.Геометрическая теория дифракции
- •51.Принцип Бабине
- •52.Световое давление
- •53.Определение преобразования Фурье
- •54.Статистические характеристики когерентных изображений.
- •55.Двумерные функции
- •56.Основные свойства спекл-картины, условия формирования
- •57.Теория когерентных изображений
- •58.Способы устранения спекл-структуры
- •59.Понятие обобщенных функций. Свойства. Операции
- •60.Понятие спекл, объективной и субъективной спекл-картины.
- •61. Контраст изображения
30.Оптика винтовых полей или сингулярная оптика
настоящее время в оптике сформировалась новая область, называемая "оптикой винтовых полей" или "сингулярной оптикой". В ее рамках рассматриваются свойства оптических вихрей, а также физический механизм их образования. Вихревая пространственно-временная структура многих физических объектов и процессов отражает глубокие фундаментальные свойства материи. Вихревые, а также близкие к ним по форме винтовые или спиралевидные структурные элементы проявляются как на молекулярном уровне, так и в глобальных процессах, происходящих в атмосфере, океане или космосе. Присущи они и ряду оптических явлений. Фактически, волновые вихри свойственны любым волновым явлениям, как классической, так и квантовой природы.
Оптико-физические процессы, вызывающие появление оптических вихрей, весьма разнообразны. Излучение с вихревой структурой может при определенных условиях формироваться в результате интерференции лазерных пучков с исходно регулярным волновым фронтом, при их прохождении через случайно-неоднородные и нелинейные среды, а также через волоконные многомодовые световоды или специальным образом изготовленные голограммы. Кроме того, возможно возбуждение вихревых полей непосредственно в лазерах.
Сингулярные пучки обладают уникальным свойством захватывать, транспортировать и вращать микрочастицы вещества, размеры которых могут варьироваться от единиц до десятков микрон. Используя данное свойство создаются устройства, называемые оптическими пинцетами.
Оптические вихри представляют собой области кругового (циркулярного) движения потока энергии в электромагнитной волне. Для продольного оптического вихря сочетание кругового и поступательного движения электромагнитной волны приводит к образованию геликоидальной поверхности равной фазы (волновая дислокация волнового фронта). При этом волновой фронт имеет везде гладкую волновую поверхность за исключением оси геликоида. Такая форма волновой поверхности обуславливает при соосной интерференции с плоской волной интерференционные полосы в виде спирали или “вилку ” интерференционных полос для наклонного падения волн, что однозначно определяет наличие оптического вихря. В картине интерференции пучков при наличии винтовой дислокации второго и более высокого порядка наблюдались бы полосы интерференции, расщепленные на четыре и более новых полосы.
Волновой фронт световых пучков, близких по своим свойствам к плоской волне, выглядит как семейство непересекающихся поверхностей. Расстояние между соседними поверхностями равно длине волны. Имеющие место в реальных пучках отклонения волновых фронтов от плоской формы называются оптическими аберрациями. Однако все аберрации, рассматриваемые в классической теории, деформируют волновой фронт без изменения его топологии.
Лазерное излучение характеризуется высокой монохроматичностью и направленностью. Это позволяет для описания его свойств использовать понятие эквифазной поверхности (волнового фронта), во всех точках которой световые колебания имеют одинаковую фазу. Если оптические вихри в лазерном пучке отсутствуют, то ему можно поставить в соответствие систему эквифазных поверхностей, близких по форме к плоскостям (рис. 7.12, а). Расстояние между соседними поверхностями равно длине волны λ.