
- •Содержание
- •Введение
- •1. Физика плазмы.
- •1.2. Несамостоятельный и самостоятельный разряд
- •1.3. Тлеющий разряд
- •2. Воздействие плазмы на материалы
- •2.1 Внедрение энергетических ионов в материалы
- •2.2 Нарушение структуры материалов при ионной бомбардировке
- •2.3 Ионное распыление
- •2.4 Характеристика частиц, эмитируемых в процессе ионного распыления.
- •2.5 Формирование рельефа на поверхности материалов в процессе распыления.
- •2.6 Влияние среды на процесс ионного распыления.
- •2.7 Химическая связь и некоторые представления о кинетике химических реакций.
- •2.8 Механизм формирования химически активной плазмы.
- •3. Высокочастотный разряд и его характеристики
- •3.1. Периодические разряды. Плазма вч и свч разрядов
- •3.2. Плазма электрон-циклотронного резонанса (эцр-плазма)
- •4. Основные характеристики плазменного травления и их зависимость от условий проведения процесса
- •5. Разновидности систем плазменного травления и их особенности.
- •5.1 Ионно-плазменное травление ипт
- •5.2 Реактивное ионное травление рит
- •5.3 Плазмохимическое травление пхт
- •5.4 Реактивное ионное травление с источником индуктивно связанной плазмы (icp etch)
- •6. Применение icp источников плазмы на примере промышленной установки Caroline ре15.
- •6.1 Назначение и устройство установки. Основные технические характеристики.
- •6.2. Основные блоки и модули установки.
- •6.3. Работа установки в автоматическом режиме.
- •Заключение
- •Список литературы
ЗНАКОМСТВО С ВАКУУМНО-ТЕХНОЛОГИЧЕСКОЙ УСТАНОВКОЙ ПЛАЗМЕННОГО ИОННО-ХИМИЧЕСКОГО ТРАВЛЕНИЯ В ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМЕ «Caroline РЕ15» И ИСЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ТРАВЛЕНИЯ ПЛЕНОК И ПОДЛОЖЕК ИЗ НЕОРГАНИЧИСКИХ МАТЕРИАЛОВ
Электронное учебное пособие
Рассмотрены физические основы плазменного ионно-реактивного травления материалов, разновидности систем плазменного травления, в т. ч. установки с индуктивно связанной плазмой на примере установки «CarolinePE15». Исследованы технологические режимы травления основных материалов микроэлектроники.
Содержание
Введение 4
1.2. Несамостоятельный и самостоятельный разряд 10
59
В конфигурации ICP Etch для создания плазмы используется индуктивный разряд. Мощность, вкладываемая в индуктивный разряд, определяет плотность плазмы и, как следствие, плотность активных радикалов и ионов. Подложка размещается на электроде, к которому подводится ВЧ напряжение для создания электрического смещения. Величина смещения электрода подложкодержателя определяет энергию и поток ионов на поверхность подложки. 59
6. Применение ICP источников плазмы на примере промышленной установки Caroline РЕ15. 62
6.1 Назначение и устройство установки. Основные технические характеристики. 62
6.2. Основные блоки и модули установки. 67
6.3. Работа установки в автоматическом режиме. 71
Заключение 89
Список литературы 90
Введение
Ионно-плазменная обработка основана на взаимодействии ионов и других энергетических частиц, полученных в низкотемпературной плазме, с поверхностью твердого тела. Результатом взаимодействия потока частиц в разряженной среде с поверхностью является осажденная пленка из части удаленного вещества или преобразованная поверхность. Это дает возможность применять процессы ионно-плазменной обработки для нанесения пленок разнообразных материалов, очистки, полировки, травления и формирования прецизионных технологических рисунков в производстве полупроводниковых приборов и микросхем, резисторов, конденсаторов, фотошаблонов, пьезокварцевых приборов и т. п. Сфера применения ионно-плазменной обработки распространяется на другие области техники, например оптику и машиностроение, где она используется для получения полированных поверхностей, упрочнения инструмента, защиты поверхностей износо- и коррозионостойкими покрытиями и т. п.
Одной из разновидностей ионно-плазменной обработки является плазменное или “сухое” травление материалов, широко применяемое в оптике и микроэлектронике. Среди широкого класса таких устройств особенное место занимают источники плазмы высокой плотности на основе ВЧ-разряда, формируемые так называемую трансформаторно-связанную (или индуктивно-связанную) плазму (принятая латинская аббревиатура TCPилиICP–InductivelyCoupledPlasma).ICP-разряд позволяет травить материалы разрешением менее 0,2 мкм и осаждать слои из паро-газовых смесей (плазменно-стимулированныйCVD-процесс)., обеспечивая при этом высокую эффективность и качество проведения процесса [1].
Существуют и другие принципы создания плазмы: устройства на электронном циклотронном резонансе ЭЦР (ECR), а также геликонные источники плазмы [1]. По сравнению с нимиICP-плазма обладает определенными преимуществами: является более дешевой, отсутствует необходимость создавать мощные магнитные поля и применять мощные генераторы электрического поля, большая однородность плазмы при увеличении объема обрабатываемых подложек. Также в литературе [3, 14, 35-38] встречаются другие определенияICP-плазмы: плазмохимическое травление (ПХТ), реактивное ионное травление в индуктивно связанной плазме (ICP-RIE), реактивное ионно-плазменное травление (РИПТ). Все это – конструктивные особенности устройств, предназначенных для реализации метода плазменного травления. Все они имеют некоторые особенности физико-химических процессов, происходящих при взаимодействии плазмы с различными материалами. В настоящей работе мы будем пользоваться терминами ПХТ иICP.
В сухом плазменном травлении, плазма высокой плотности используется при низком давлении для высокоскоростного травления кремния, поликремния, а также не стандартных материалов, таких как кварц или стекло.
Весьма перспективной областью применения ICP-плазмы является нанотехнология, в частности технология изготовления микропроцессоров и микроконтроллеров со сверхразрешением, наноструктурированных материалов, дифракционных оптических элементов ДОЭ, работающих в УФ области.
В настоящее время внимание разработчиков технологического оборудования направлено на изучение высокочастотных источников плазмы высокой плотности, которые позволяют методом ионно-плазменного травления получать высокую однородность травления подложек с высокой селективностью.
Все это делает актуальным вопрос дальнейшего развития техники и технологии травления различных материалов с заданными параметрами в различных отраслях промышленности с использованием индуктивно-связанной плазмы высокой плотности.