
- •Федеральное агентство связи
- •Работа № 1. Сигналы и их спектры Исполнитель Иванов и.И. Гр. Икт-100 (10.07.12)
- •1. Исследование зависимости спектра сигнала от его формы.
- •А б
- •1. Исследование сигналов
- •Работа 1. Сигналы и их спектры
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Работа 2. Аналитический сигнал
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Работа 3. Дискретизация и восстановление сигналов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Работа 4. Модулированные сигналы
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Работа 5. Ортогональность сигналов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •2. Нелинейные преобразования сигналов
- •А) б) в)
- •Г) д)
- •Характеристик нп Работа 6. Преобразование сигналов в нелинейных цепях
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 7. Нелинейное усиление и умножение частоты
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Работа 8. Амплитудная модуляция
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Контрольные вопросы
- •Работа 9. Детектирование ам сигналов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Работа 10. Преобразование частоты сигналов на нелинейной основе
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Параметрические преобразования сигналов
- •Работа 11. Линейные виды модуляции
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Работа 12. Преобразование частоты на параметрической основе
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Работа 13. Детектирование фм и чм сигналов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Системы передачи дискретных сообщений
- •Работа 14. Знакомство с системой пдс
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Контрольные вопросы
- •Работа 15. Исследование когерентных демодуляторов
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Работа 16. Исследование некогерентных демодуляторов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Работа 17. Исследование помехоустойчивости спдс
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Контрольные вопросы
- •Работа 18. Помехоустойчивое кодирование в спдс
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Статистическая радиотехника
- •Работа 19. Законы распределения случайных процессов
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Контрольные вопросы
- •Работа 20. Прохождение случайных процессов через фу
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Контрольные вопросы
- •Работа 21. Детектор огибающей сигнала
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Работа 22. Согласованная фильтрация сигналов
- •З Рис. 40. Набор сф Рис. 41. Двоичный тф Рис. 42. Аналоговый тФадание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Контрольные вопросы
- •Цифровые виды модуляции в системах связи
- •Работа 23. Передача непрерывных сообщений по цифровому каналу
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 24. Исследование ацп и цап
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 25. Исследование сигналов с фм и офм
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 26. Исследование сигналов с фм-4 (qpsk и oqpsk)
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 27. Исследование сигналов с фм-16
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 28. Исследование сигналов с кам-16 (qask и spm)
- •Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Работа 29. Исследование сверточного кодирования, цм и скк
- •З Рис. 54. Форма с решетчатой диаграммой выживших путей декодера Витербиадание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Задание 6
- •Создание и выполнение альтернативных лабораторных работ
- •Перечень ресурсов виртуальной лаборатории
- •Пример оформления отчета в редакторе ms Word с использованием скриншотов и других файлов, записанных в лаборатории на дискету или флешку
- •Литература
- •Содержание
Работа 21. Детектор огибающей сигнала
Работа «Детектор огибающей сигнала» предназначена для изучения идеального линейного детектора АМ сигналов. Она содержит четыре задания:
Моделирование идеального линейного детектора АМ сигналов.
Исследование влияния частоты среза Fв ФНЧ 1-го порядка на качество детектирования простого АМ сигнала.
Исследование влияния порядка цепи ФНЧ на качество детектирования простого АМ сигнала.
Исследование детектирования сложного АМ сигнала.
Задание 1
Рассмотрите и зафиксируйте схему исследования, содержащую последовательно соединенные односторонний ограничитель и ФНЧ.
Установите в ограничителе нижний порог Uнп = 0 В и неограниченный верхний порог (Uвп > 1 В). Такой ограничитель может служить моделью полупроводникового диода в режиме сильного сигнала.
На входе ограничителя s(t) установите АМ сигнал с Fнес = 10 кГц и m = 1, модулированный гармоническим колебанием с F = 0,9 кГц. Для этого активизируйте пункты меню «Сигнал s(t)» / «Генератор сигналов» и в появившейся панели генератора сигналов выберите форму «Cos», установите размах А = 1 В, частоту F= 0,9 кГц, угол отсечки 180°, включите модулятор в режиме АМ, установив Fнес = 10 кГц и коэффициент модуляции m = 1. После запуска канала наблюдения 1 этот сигнал будет присутствовать на входе s(t) до тех пор пока не будет изменен аналогичным образом на другой.
Наблюдайте и зафиксируйте осциллограммы и спектрограммы сигналов в следующей последовательности (по каналам):
1) АМ сигнал s(t) (т. 1),
2) на выходе ограничителя сигналов (т. 2),
3) на выходе идеального ФНЧ с Fв=1 кГц (т. 3),
4) на выходе реального ФНЧ 1-го порядка с Fв = 1 кГц (т. 3).
Сделайте выводы по результатам наблюдений.
Комментарии и выводы
В данной работе детектор огибающей (амплитудный детектор) выполнен в виде каскадного соединения безынерционного нелинейного элемента (БНЭ) – ограничителя с идеальной кусочно-линейной характеристикой (аналог идеального диода) и ФНЧ. БНЭ служит для обогащения спектра реакции низкочастотными колебаниями модулирующей Fм частоты (Fм = f – fбок), которые отсутствуют во входном напряжении. ФНЧ предназначен для выделения полезных составляющих спектра выходного тока (его низкочастотных составляющих) и подавления всех остальных побочных продуктов нелинейного преобразования. Для этого его частота верхнего среза Fв выбирается из условия F < Fв < f, где F – максимальная частота в спектре модулирующего сигнала, f – несущая частота входного АМ сигнала.
Степень подавления побочных продуктов нелинейного преобразования по отношению к полезным составляющим определяется качеством ФНЧ (его порядком). Чем выше порядок ФНЧ, тем меньше отклонение выходного напряжения детектора от огибающей входного сигнала.
Из результатов выполнения задания 1 видно, что:
1) спектр реакции ограничителя обогащается как полезной спектральной составляющей с частотой модуляции 0,9 кГц, так и побочными продуктами нелинейного преобразования;
2) при использовании идеального ФНЧ выходное напряжение не отличается от огибающей АМ сигнала на входе детектора,
3) при использовании простейшего ФНЧ 1-го порядка заметны искажения выходного сигнала, связанные с неполным подавлением ВЧ составляющих реакции БНЭ.