
- •Хранение информации
- •Системы оперативной обработки информации
- •Обобщенная структура системы oltp
- •Системы поддержки принятия решений
- •Хранилища данных
- •Обобщенная концептуальная схема хд детализированные и агрегированные данные
- •Метаданные
- •Управление жизненным циклом информации
- •Фиксированный контент
- •Извлечение данных (etl)
- •Обобщенная структура процесса etl Архитектуры хранилищ данных
- •Шесть уровней архитектуры хранилища данных
- •Консолидация с использованием витрин данных
- •Реляционные хранилища данных
- •Многомерные хранилища данных
- •Гибридные хранилища данных
- •Гибридное хд
- •Анализ данных введение в olap
- •Эволюция понимания места olap в архитектуре
- •Принцип организации многомерного куба
- •Измерения и факты в многомерном кубе
- •Сечения гиперкуба
- •Двумерный срез куба для одного факта
- •Двумерный срез куба для нескольких фактов
- •Двумерный срез куба с несколькими измерениями на одной оси
Гибридные хранилища данных
Многомерная и реляционная модели ХД имеют свои преимущества и недостатки. Например, многомерная модель позволяет быстрее получить ответ на запрос, но не дает возможности эффективно управлять такими же большими объемами данных, как реляционная модель.
Логично было бы использовать такую модель ХД, которая представляла бы собой комбинацию реляционной и многомерной моделей и позволяла бы сочетать высокую производительность, характерную для многомерной модели, и возможность хранить сколь угодно большие массивы данных, присущую реляционной модели. Такая модель, сочетающая в себе принципы реляционной и многомерной моделей, получила название гибридной, или HOLAP (Hybrid OLAP).
Хранилища данных, построенные на основе HOLAP, называются гибридными хранилищами данных (ГХД).
Гибридное хд
Главным принципом построения ГХД является то, что детализированные данные хранятся в реляционной структуре (ROLAP), которая позволяет хранить большие объемы данных, а агрегированные — в многомерной (MOLAP), которая позволяет увеличить скорость выполнения запросов (поскольку при выполнении аналитических запросов уже не требуется вычислять агрегаты).
Пример
В супермаркете, ежедневно обслуживающем десятки тысяч покупателей, установлена регистрирующая OLTP-система. При этом максимальному уровню детализации регистрируемых данных соответствует покупка по одному чеку, в котором указываются общая сумма покупки, наименования или коды приобретенных товаров и стоимость каждого товара. Оперативная информация, состоящая из детализированных данных, консолидируется в реляционной структуре ХД. С точки зрения анализа представляют интерес обобщенные данные, например, по группам товаров, отделам или некоторым интервалам дат. Поэтому исходные детализированные данные агрегируются, и вычисленные агрегаты сохраняются в многомерной структуре гибридного ХД.
Если данные, поступающие из OLTP-системы, имеют большой объем (несколько десятков тысяч записей в день и более) и высокую степень детализации, а для анализа используются в основном обобщенные данные, гибридная архитектура хранилища оказывается наиболее подходящей.
Недостатком гибридной модели является усложнение администрирования ХД из-за более сложного регламента его пополнения, поскольку при этом необходимо согласовывать изменения в реляционной и многомерной структурах.
Преимущества:
Построение OLAP-куба выполняется по запросу OLAP-средства на основе реляционных и многомерных данных. Такой подход позволяет избежать взрывного роста данных. При этом можно достичь оптимального времени исполнения клиентских запросов.
Анализ данных введение в olap
Любая транзакционная система, как правило, содержит два типа таблиц. Один из них отвечает за быстрые транзакции. Например, при продаже билетов необходимо обеспечить работу большого числа кассиров, которые обмениваются с системой короткими сообщениями. Вводимая и распечатываемая информация, касающаяся фамилии пассажира, даты вылета, рейса, места, пункта назначения, может быть оценена в 1000 байт. Таким образом, для обслуживания пассажиров необходима быстрая обработка коротких записей.
Другой тип таблиц содержит итоговые данные о продажах за указанный срок, по направлениям, по категориям пассажиров. Эти таблицы используются аналитиками и финансовыми специалистами раз в месяц, или в конце года, когда необходимо подвести итоги деятельности компании. И если количество аналитиков в десятки раз меньше числа кассиров, то объемы данных, необходимых для анализа, превышают размер средней транзакции на несколько порядков величины. Естественно, что во время выполнения аналитических работ время отклика системы на запрос о наличии билета увеличивается.
Вторым фактором, приведшим к разделению аналитических и транзакционных систем, являются разные требования, которые предъявляют аналитические и транзакционные системы к вычислительным комплексам.
Технология OLAP (Online Analytical Processing) представляет собой методику оперативного извлечения нужной информации из больших массивов данных и формирования соответствующих отчетов.
История OLAP начинается в 1993. Первоначально казалось, что разделения транзакционных и аналитических систем (OLTP – OLAP) вполне достаточно. Однако вскоре выяснилось, что OLAP–системы очень плохо справляются с ролью посредника между различными транзакционными системами - источниками данных и клиентскими приложениями.
Стало ясно, что необходима среда хранения аналитических данных. И поначалу на эту роль претендовали единые базы данных, в которые предлагалось копировать исходную информацию из источников данных. Эта идея оказалась не вполне жизнеспособной, поскольку транзакционные системы разрабатывались, как правило, без единого плана, и содержали противоречивую и несогласованную информацию.