- •Введение
- •1. Матрицы и действия с матрицами
- •2. Определители
- •3. Обратная матрица. Решение матричных уравнений
- •4. Ранг матрицы
- •5. Системы линейных уравнений. Основные понятия
- •6. Решение линейных систем по формулам Крамера
- •7. Решение систем с помощью обратной матрицы
- •8. Исследование систем линейных уравнений. Метод Гаусса
- •9. Однородные системы
- •10. Собственные значения и собственные векторы матрицы
- •11. Действия с матрицами на компьютере в excel
- •12. Решение систем линейных уравнений в excel
- •Индивидуальное задание
11. Действия с матрицами на компьютере в excel
Рассмотрим применение табличного процессора EXCEL для работы с матрицами.
Процессор EXCEL работает с числовыми матрицами и может осуществлять следующие операции:
сложение (вычитание) матриц, умножение матриц на число,
преобразования матрицы с целью получения нулей,
вычисление определителя матрицы,
транспонирование матрицы,
нахождение обратной матрицы.
Сложение матриц, умножение матрицы на число, преобразование матрицы осуществляются с помощью строки формул. Для нахождения определителя матрицы, транспонированной матрицы, обратной матрицы, а также для умножения матриц следует пользоваться соответствующими встроенными функциями: МОПРЕД; ТРАНСП; МОБР; МУМНОЖ. К сожалению, нет встроенной функции для определения ранга матрицы. Ранг придется находить переходом к эквивалентной матрице. Такой же переход полезен и для исследования линейных систем.
Сложение матриц.
Рис.3
В ячейки введена матрица.
В ячейки введена матрица.
В ячейку введена формулаи скопирована в диапазон.
Умножение матрицы на число.
Рис.4
В ячейки введена матрица,
В ячейку введено число.
В ячейку введена формулаи скопирована в диапазон.
Вычисление определителя, транспонирование, нахождение обратной матрицы.
Перечисленные операции проводятся с помощью соответствующих встроенных функций. При выполнении операций транспонирования, умножения матриц, нахождения обратной матрицы необходимо предварительно выделить диапазон ячеек для записи результата. Результат получается нажатием клавиш (ввод массива).
Рис.5
В ячейки введена матрица, в ячейки- матрица.
В ячейку введем формулу=МОПРЕД, заполним поле значений аргумента, получаем значение определителя матрицы.
Пример 16. Вычислить обратную матрицу для .
Выделим диапазон ячеек для записи обратной матрицы. Теперь надо вызвать Мастер функций, выбрать имя функции МОБР, ввести в поле значений аргумента функциии нажать клавиши(ввод массива).
Пример 17. Умножить матрицы и.
Определим размерность матрицы (результата умножения):, и выделим диапазондля записи этой матрицы.
Для умножения надо вызвать Мастер функций, выбрать имя функции МУМНОЖ, ввести в поле значений 1 аргумента функции первую матрицу, в поле 2 – вторую матрицу, и нажать клавиши (ввод массива). В ячейках− результат умножения.
Вычисление ранга матрицы.
Будем последовательно получать нули в первом, втором и т.д. столбцах ниже диагональных элементов.
Рис.6
В ячейки введем матрицу (пример 11).
Получим нули в первом столбце матрицы . Для этого в ячейкувведем формулуи скопируем ее в ячейки, в ячейкувведем формулуи скопируем ее в ячейки.
Аналогично получаем нули во втором столбце. В ячейку введем формулуи скопируем ее в ячейку. В ячейкувведем формулуи скопируем ее в ячейки.
Дальше получаем нули в третьем столбце. В ячейку введем формулуи скопируем ее в ячейку. В ячейкувведем формулуи скопируем ее в ячейки.
Получили полностью нулевые строки. Ниже копированием значений (специальная вставка) записана преобразованная матрица (нули ниже диагонали опущены). Следовательно, ранг матрицы равен трем.