
- •1 Заочное обучение
- •Алипов а.Н. Конспект лекций по тип
- •Технические измерения и приборы
- •СПб 2013 г
- •Оглавление
- •1.2 Системы единиц физических величин
- •1.3. Внесистемные и другие единицы физических величин
- •Некоторые внесистемные единицы, допускаемые к применению наравне с единицами си
- •Множители и приставки для образования десятичных кратных и дольных единиц
- •1.4.Относительные и логарифмические величины
- •1.5. Погрешности измерений физических величин
- •Вопросы для самопроверки 1
- •2.2 Интеллектуальные измерительные приборы (сенсоры)
- •2.3 Интеллектуальные измерительные системы
- •Вопросы для самопроверки 2
- •3. Виды механических сенсоров
- •3.2. Сенсоры линейного перемещения
- •3.3. Сенсоры углового перемещения
- •Инклинометры
- •Энкодеры
- •3.4 Акселерометры
- •Линейные акселерометры
- •Емкостной акселерометр
- •Угловые акселерометры
- •3.5 Вибрационные измерительные сенсоры
- •Виброанализаторы
- •Вопросы и упражнения для самопроверки 3 Дать кратко письменные ответы:
- •4. Акустические сенсоры
- •4.1 Физические основы работы акустических сенсоров
- •4.2. Приемники акустических сигналов
- •Прослушивающие устройства
- •4.3 Активные акустические сенсоры
- •Эхолокаторы,
- •Уз исследования в медицине.
- •Уз исследования для сейсморазведки
- •Вопросы и упражнения для самопроверки 4 Дать кратко письменные ответы:
- •5.1. Физические основы работы электрических сенсоров-датчиков
- •5.2. Резистивные сенсоры
- •Терморезисторы
- •Термисторы
- •Фоторезисторы
- •Пьезорезисторы ( Тензорезисторы)
- •Магниторезистивные сенсоры
- •5.3 Емкостные сенсоры
- •Импедансные сенсоры
- •6 Вольтаические сенсоры-датчики
- •6.1 Сенсоры на основе термо-эдс
- •6.2 Сенсоры на основе фотовольтаического эффекта
- •6.3 Пьезоэлектрические сенсоры
- •7 Анализаторы спектра электромагнитного излучения
- •7.1 Диапазоны электромагнитного излучения Таблица 2.1
- •7.2 Термины и определения.
- •Вопросы для самопроверки 7
- •Internet - ресурсы
Энкодеры
Для измерения углов поворота и количества оборотов все чаще стали использовать оптоэлектронные энкодеры. По принципу действия принято различать так называемые "абсолютные" и "инкрементные" энкодеры.
Абсолютные энкодеры выдают на свой выход цифровые коды, которые отвечают абсолютному значению угла поворота относительно положения,принятого за нуль.
В инкрементных энкодерах счетный диск имеет, как правило, лишь одну дорожку, на которой прозрачные и непрозрачные участки чередуются
На выходе сенсора будет формироваться последовательность импульсов с периодом, обратно пропорциональным скорости вращения диска..
3.4 Акселерометры
Сенсоры, которые реагируют на ускорение и измеряют его, называют акселерометрами. Различают сенсоры линейного и углового ускорения.
Линейные акселерометры
Акселерометр, который измеряет линейное ускорение, т.е. ускорение поступательного движения тела, состоит из инертной массы М, упругого элемента У и демпфера Д (рис. 3.2). Конструкция акселерометра должна быть такой, чтобы инертная масса М могла перемещаться лишь вдоль одной прямой, которую называют осью акселерометра. В контролируемом объекте, движущемся с ускорением а в направлении оси акселерометра, на массу М действует сила инерции, которая согласно второму закону Ньютона равняется Ма. Под действием этой силы инертная масса М приходит в движение, деформируя упругий элемент У, который противодействует движению. Чтобы в этой механической системе не возникали продолжительные колебания, используется демпфер Д, который тоже оказывает сопротивление движению инертной массы М с силой, пропорциональной скорости ее движения, и превращает энергию колебательного движения в тепло.
Рис. 3.2. Принципиальная механическая схема акселерометра
Движение инертной массы М описывается дифференциальным уравнением 2-го порядка (формула 3.4):
где
–
отклонение инертной массыМ
от положения равновесия;
–
коэффициент затухания, обусловленный
демпфированием;
–
коэффициент жесткости упругого элемента;
–
текущее ускорение объекта, на котором
установленакселерометр.
Демпфер
обычно регулируют так, чтобы коэффициент
затухания достиг критического значения.
В этом случае время реакции акселерометра
на изменение ускорения оказывается
наименьшим, и даже при скачкообразном
изменении ускорения
колебания
вокруг нового положения равновесия не
возникают. Чтобы определить ускорение
,
достаточно измерить отклонение
от
положения равновесия или силу
,
которая действует на упругий элемент.
Таким образом, инертная масса М обеспечивает преобразование первичного информационного сигнала в виде линейного ускорения в механическое перемещение или в силу деформации упругого элемента. Упругий элемент обеспечивает линейность или, по крайней мере, взаимную однозначность преобразования. А демпфер предотвращает возникновение длительных колебательных процессов. Получается, что все они являются необходимыми составными элементами акселерометра.
Емкостной акселерометр
На рис. 3.3 показана конструкция емкостного акселерометра, изготовленного с использованием МСТ. В кристалле кремния 1 вытравлены участки 2 так, что значительная инертная масса 3 механически отделена от других частей акселерометра. Она соединена с ними лишь тонкими перемычками 4, которые играют роль упругих элементов. На небольшом расстоянии (~ 10 мкм) от кристалла кремния сверху и снизу расположены металлические электроды 5 и 6. Роль демпфера играет вязкая непроводящая жидкость, которой заполняется пространство между электродами и кремнием.
Рис. 3.3. Конструкция емкостного акселерометра
Инертная масса 3 в такой конструкции может перемещаться только по вертикали. Электрические ёмкости между ней и верхним (нижним) электродами включены в противоположные плечи электрической мостовой схемы переменного тока. Её балансируют так, чтобы при отсутствии ускорения сигнал на выходе равнялся нулю. Когда объект, на котором установлен акселерометр, движется с ускорением, направленным вдоль оси сенсора, инертная масса 3 смещается из положения равновесия, вследствие чего одна из емкостей возрастает, а другая уменьшается. Из-за нарушения баланса на выходе мостовой схемы появляется напряжение соответствующего знака и тем большее, чем больше ускорение. Мостовую электрическую схему, необходимые электронные ключи, усилители, элементы термокомпенсации, – все, что требуется для обработки сигналов и калибровки акселерометра, – формируют ныне методами МСТ (микросистемной технологии) на том же кристалле кремния.
В описанной конструкции акселерометра ускорение, которое и является здесь первичным информационным сигналом, сначала превращается в линейное перемещение инертной массы. Перемещение, в свою очередь, преобразуется в изменение емкости верхнего и нижнего конденсаторов, а последнее – в электрический сигнал.