
- •Анализ электромагнитной совместимости радиоэлектронных средств
- •Оглавление
- •10. Описание антенных устройств в задачах эмс 198
- •11. Оценка потерь на трассах распространения 223
- •12. Критерии оценки эмс 261
- •13. Организационные методы обеспечения эмс 289
- •Список использованных сокращений
- •Введение
- •1. Проблема эмс и причины ее появления
- •Основные понятия и определения
- •Причины появления проблемы эмс
- •Последствия отсутствия эмс и особенности изучения проблемы эмс рэс
- •2. Источники и рецепторы электромагнитных помех (эмп)
- •Классификация эмп по связям с источником помехи и некоторые их характеристики
- •2.1.1. Естественные эмп.
- •Чувствительность некоторых полупроводниковых приборов к электростатическому разряду
- •2.1.2. Искусственные эмп
- •Рецепторы эмп. Внутрисистемная и межсистемная эмс
- •Пути проникновения помех. Виды помех в электрических цепях
- •3. Измерение параметров эмс технических средств
- •Измерение кондуктивных помех и восприимчивости к ним
- •Измерение помех излучения и восприимчивости к ним
- •4. Технические методы подавления и защиты от помех
- •Экранирование
- •Фильтрация
- •Заземление
- •5. Радиочастотный спектр и его использование
- •Радиочастотный спектр и диапазоны частот
- •Диапазоны частот электромагнитных колебаний
- •Основные понятия, связанные с использованием рчс
- •Регулирование использования рчс в Российской Федерации
- •Стандартизация и международная кооперация в области эмс
- •6. Общий подход к анализу и обеспечению эмс
- •Требования к методам анализа эмс
- •Анализ параметров эмс систем на стадии разработки
- •Анализ внутрисистемной и межсистемной эмс рэс
- •Основные направления по решению проблемы эмс
- •7. Описание излучений радиопередатчиков в задачах эмс
- •Виды излучений радиопередатчиков
- •Основное и внеполосное сигнальное излучения
- •7.2.1. Класс излучения
- •7.2.2. Параметры и модели основного и внеполосных излучений
- •Границы областей внеполосных излучений относительно центральной частоты основного излучения в зависимости от диапазона рабочих частот передатчика и необходимой ширины полосы частот
- •Точки излома спектральной маски для рис. 7.2
- •Точки излома масок спектров, представленных на рис. 7.3
- •Параметры модели (7.1)
- •Побочные излучения радиопередатчиков
- •Параметры модели (7.9)
- •Предельные значения мощности побочных излучений в контрольной полосе
- •Шумовые излучения передатчика
- •Параметры эмпирической модели, представленной выражением (7.10)
- •8. Описание радиоприемных устройств в задачах эмс
- •Общие характеристики радиоприемных устройств, определяющие их совместимость с окружением
- •Основной канал приема радиоприемника и его описание
- •Побочные каналы приема и их описание
- •Параметры модели (8.9)
- •Оценка коэффициента частотной коррекции
- •Результаты расчета относительной расстройки частоты Δp
- •9. Нелинейные эффекты в приемопередающей аппаратуре и их оценка в задачах эмс
- •Анализ нелинейных явлений в каскадах радиоаппаратуры
- •Компрессия сигнала в радиоприемнике. Параметры, определяющие динамический диапазон приемника по основному каналу приема
- •Эффект блокирования радиоприемного устройства. Основные параметры, характеристики и методы их измерения
- •Перенос шумов гетеродина
- •9.4.1. Фазовый шум генератора
- •9.4.2.Перенос шумов гетеродина
- •Интермодуляция
- •9.5.1. Порядок интермодуляции. Наиболее опасные порядки интермодуляции
- •9.5.2. Интермодуляция в радиоприемных устройствах. Параметры, связанные с эффектом интермодуляции
- •9.5.3. Интермодуляция в радиопередатчиках
- •9.5.4. Точка пересечения и расчет уровней интермодуляционных продуктов на нелинейном элементе
- •9.5.5. Измерение и расчет точек пересечения
- •9.5.6. Динамический диапазон приемника по интермодуляции и связь параметров нелинейности
- •9.5.7. Оценка мощности интермодуляционных продуктов с использованием точки пересечения
- •Перекрестные искажения
- •Оценка нелинейных явлений в задачах эмс рэс
- •9.7.1. Оценка эффекта блокирования рпу
- •Представление функции Pb(X) при оценке эффекта блокирования
- •Характеристики блокирования приемников некоторых цифровых систем связи
- •9.7.2.Оценка уровней интермодуляционных продуктов в радиопередатчиках
- •Параметры эмпирической модели (9.66)
- •9.7.3. Оценка интермодуляции в радиоприемниках
- •Границы частотных интервалов для анализа нелинейных эффектов в приемнике
- •Эмпирические модели для оценки эффекта интермодуляции в радиоприемниках
- •9.7.4. Оценка перекрестных искажений
- •10. Описание антенных устройств в задачах эмс
- •Некоторые общие сведения о характеристиках антенн
- •Особенности описания антенных устройств в задачах эмс
- •Детерминированное описание диаграмм направленности антенн
- •10.3.1. Дна в области рабочих частот.
- •10.3.2. Дна на нерабочих частотах
- •Параметры диаграмм направленности за пределами диапазона рабочих частот антенн.
- •Статистическое описание диаграмм направленности антенн
- •Параметры функции f(g) для области бокового усиления
- •Потери в антенно-фидерном тракте и потери рассогласования
- •Учет поляризационных характеристик антенн и сигналов
- •Ослабление мешающих сигналов при несовпадении поляризации с приемной антенной
- •Ближняя зона
- •11. Оценка потерь на трассах распространения
- •Общие положения
- •Модели для оценки потерь на трассах распространения и цифровые карты местности
- •Графические модели
- •Аналитические модели
- •Расчетные соотношения, используемые в классической модели Хата
- •Расчетные соотношения, используемые в модели cost 231 Хата
- •Расчетные соотношения, используемые в модифицированной модели Хата
- •Среднеквадратическое отклонение (ско) потерь на трассах распространения
- •Оценка потерь на дифракцию
- •11.5.1. Зоны Френеля.
- •11.5.2. Дифракция на клине
- •11.5.3. Дифракция на цилиндре
- •12. Критерии оценки эмс
- •Рабочие характеристики и оценка качества работы рэс
- •12.2. Виды рабочих характеристик рэс различного назначения
- •12.3. Критерии эмс
- •Защитные отношения для систем тв (625 строк), работающих в соседнем канале
- •Защитные отношения для аналоговых каналов звукового сопровождения тв
- •Защитные отношения для цифровых каналов звукового сопровождения тв, дБ
- •Защитные отношения по совмещенному каналу для некоторых современных систем связи, дБ
- •Защитные отношения для некоторых современных систем связи в зависимости от расстройки помехи, дБ
- •12.4. Моделирование процессов управления мощностью передатчиков в сетях сухопутной подвижной связи
- •13. Организационные методы обеспечения эмс
- •13.1. Частотно-территориальное планирование
- •13.2. Управление параметрами радиосигналов
- •13.3. Радиоконтроль и его роль в управлении использованием радиочастотного спектра и обеспечения эмс
- •Заключение
- •Список литературы
- •Анализ электромагнитной совместимости радиоэлектронных средств
- •197376, С.- Петербург, ул. Проф. Попова, 5
Параметры эмпирической модели (9.66)
Двухсигнальная интермодуляция 3-го порядка: fим= 2fv –fi | ||
f, МГц |
a |
b |
0 < f 0.8 |
10.8 |
2.1 |
0.8 < f 5.5 |
9.3 |
4.0 |
f > 5.5 |
13.4 |
3.2 |
Двухсигнальная интермодуляция 5-го порядка: fим= 3fv – 2fi | ||
0 < f 1.5 |
31 |
11.4 |
f > 1.5 |
36 |
7.5 |
9.7.3. Оценка интермодуляции в радиоприемниках
Интермодуляционные продукты в РПУ могут быть образованы очень большим числом частот, которые присутствуют в эфире. В связи с этим возникает вопрос, в какой полосе частот относительно частоты настройки приемника следует рассматривать мешающие сигналы, которые могут образовать опасные интермодуляционные продукты. Обзор данных измерений и практический опыт показывают, что выше некоторых значений расстроек мешающих сигналов, зависящих от типа оборудования, вероятность нелинейных эффектов в приемнике незначительна. При известной АЧХ входного фильтра или преселектора приемника в качестве полосы частот, в пределах которой выполняется анализ сигналов на нелинейные эффекты, может быть использована ширина полосы пропускания входного фильтра или преселектора приемника на некотором уровне, например, на уровне 30 дБ. Если информация о характеристиках частотной избирательности отсутствует, можно использовать результаты статистической обработки экспериментальных данных относительно максимальной частотной расстройки помехи fmax, при которой наблюдалось образование интермодуляционных продуктов в приемниках. В [16], [32] приведены интегральные функции распределения для fmax, полученные на ограниченном множестве приемников для интермодуляции 3-го порядка в диапазонах ВЧ, ОВЧ, УВЧ. Эти функции распределения позволяют, в частности, установить, что с вероятностью 0.75 расстройка fmax для сигналов, образующих ИМП 3-го порядка не превысит значений, приведенных в табл. 9.4.
Таблица 9.4
Границы частотных интервалов для анализа нелинейных эффектов в приемнике
Частота настройки приемника f0R |
f0R<30МГц |
30 f0R <300 МГц |
f0R >300 МГц |
Максимальная расстройка fmax |
f0R/2 |
f0R/3 |
f0R/10 |
Эти значения fmax могут быть использованы для определения границ частотного интервала, в котором рассматриваются нелинейные эффекты в общем случае.
Значения максимальных расстроек, приведенные в табл. 9.4, в определенной степени можно считать условными. Они дают некоторый ориентир на порядок расстроек, превышение которых при образовании интермодуляционной помехи маловероятно. На практике могут использоваться другие значения. Так, например, при исследовании ЭМС радиоэлектронных средств, размещаемых на объекте, в диапазоне частот 225…400 МГц с использованием модели Cosam полоса частот, в которой рассматривались мешающие сигналы на возможные нелинейные эффекты в РПУ, была выбрана для всех средств одинаковой: fmax = 20 МГц [25].
Интермодуляционная помеха, образующаяся в приемнике, является потенциально опасной, если ее частота находится в полосе пропускания приемника, т. е. если выполняется условие
| fим – f0R | Bпч/2 (9.67)
где fим – частота интермодуляционного продукта (помехи); f0R – частота настройки приемника; Bпч – полоса пропускания тракта последней ПЧ.
Окончательное решение о степени опасности интермодуляционного продукта может быть принято на основании оценки его уровня. Обычно в приемнике рассматривают двухсигнальные продукты третьего порядка с частотами интермодуляции | 2fi – fj |. В ряде случаев в число анализируемых продуктов включают трехсигнальный продукт третьего порядка с частотой интермодуляции | fi – fj + fk | или двухсигнальный продукт пятого порядка с частотой |3fi – 2fj |, а для некоторых типов приемников, например приемников с преобразованием несущей частоты на нулевую промежуточную частоту, ИМП второго порядка вида | fi – fj |, где fi, fj, fk – частоты мешающих сигналов на входе приемника.
Модели для анализа интермодуляции в РПУ в ряде случаев могут использовать информацию о характеристиках приемника, которая отсутствует в спецификациях на приемник. Такие модели требуют дополнительных измерений некоторых характеристик приемников.
Пусть fим = | nf1 mf2 |, где n, m – целые положительные числа и m + n = N – порядок интермодуляции. Если известна точка пересечения N-го порядка (или динамический диапазон по интермодуляции порядка N, из которого можно получить оценку точки пересечения), оценить уровень интермодуляционного продукта можно, используя (9.45):
PIMN = nP1 + mP2 – (n + m – 1)IPNi, (9.45)
где PIMN – мощность ИМП N-го порядка, приведенная к входу приемника, дБм; P1, P2 – мощности сигналов на входе приемника на частотах f1, f2, соответственно, дБм; IPNi – точка пересечения N-го порядка, отнесенная к входу приемника, дБм.
Это выражение определяет уровень ИМП, приведенный к входу приемника, для наихудшего случая, когда fим = f0R, а взаимодействующие сигналы представляют собой немодулированные несущие. В общем случае возможна коррекция уровня ИМП, определенного из (9.45). Коррекция может быть связана с расстройкой частоты интермодуляции относительно частоты настройки приемника, а также с наличием модуляции у взаимодействующих сигналов.
В определенных ситуациях могут быть использованы эмпирические модели. В [31] представлены эмпирические модели для оценки уровней ИМП, возникающих в приемниках, рабочие частоты которых не превышают 1 ГГц. Модели использовались в автоматизированной программе назначения частот для оперативных групп наземных подвижных средств. Модели рассматривают двух и трехсигнальную интермодуляцию третьего и пятого порядков, вид которой и расчетные формулы для оценки мощности интермодуляционных продуктов представлены в табл. 9.5.
Таблица 9.5