
ЭКЗАМЕН 2015 / Теория ответы по вопросам / ПОКАЗАТЕЛИ ЛИКВОРА В НОРМЕ
.doc
ОБЩИЕ СВЕДЕНИЯ О ЛИКВОРЕ |
|
||||
Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 - 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга. |
|||||
Процесс ликворообращения в ЦНС включает 3 основных звена: |
|||||
1). Продукцию (образование) ликвора. |
|||||
2). Циркуляцию ликвора. |
|||||
3). Отток ликвора. |
|||||
Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 - 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме. |
|||||
Распределение ликвора головного мозга. |
|||||
Цифры распределения ликвора таковы: каждый боковой желудочек содержит 15 мл ликвора; III, IV желудочки вместе с Сильвиевым водопроводом содержат 5 мл; церебральное субарахноидальное пространство - 25 мл; спинальное пространство - 75 мл ликвора. В младенчестве и в раннем детстве количество ликвора колеблется между 40 - 60 мл, у детей младшего возраста 60 - 80 мл, у старших детей 80 - 100 мл. |
|||||
Скорость образования ликвора у человека. |
|||||
Одни авторы (Mestrezat, Eskuchen) полагают, что жидкость может обновляться в течение суток 6 - 7 раз, другие авторы (Dandy) считают, что 4 раза. Это означает, что в сутки продуцируется 600 - 900 мл ликвора. По Weigeldt, полный обмен его совершается в течение 3 дней, иначе в сутки образуется всего 50 мл ликвора. Иные авторы указывают цифры от 400 до 500 мл, другие от 40 до 90 мл ликвора за сутки. |
|||||
Столь различные данные объясняются в первую очередь неодинаковыми методиками исследования скорости образования ликвора у человека. Одни авторы получили результаты путём введения постоянного дренажа в желудочек мозга, другие - путём собирания ликвора у больных при назальной ликворее, третьи вычисляли быстроту резорбции введённой в мозговой желудочек краски или рассасывания введённого в желудочек воздуха при энцефалографии. |
|||||
Помимо различных методик, обращает на себя внимание и то обстоятельство, что указанные наблюдения велись в патологических условиях. С другой стороны, количество продуцируемого ликвора и у здорового человека, несомненно, колеблется в зависимости от ряда разнообразных причин: функционального состояния высших нервных центров и висцеральных органов, физического или умственного напряжения. Следовательно, связь с состоянием крово- и лимфообращения в каждый данный момент, зависит от условия питания и приёма жидкостей, отсюда связь с процессами тканевого обмена в ЦНС у различных индивидуумов, возраст человека и прочие, безусловно, влияют на общее количество ликвора. |
|||||
Одним из важных вопросов является вопрос о количестве выпускаемой цереброспинальной жидкости, необходимой для тех или иных целей исследователя. Одни исследователи рекомендуют брать для диагностических целей 8 - 10 мл, а другие - около 10 - 12 мл, третьи - от 5 до 8 мл ликвора. |
|||||
Разумеется, нельзя точно установить для всех случаев более или менее одинаковое количество ликвора, потому что необходимо: а. Считаться с состоянием больного и уровнем давления в канале; б. Согласовываться с теми методами исследования, которые пунктирующий должен провести в каждом отдельном случае. |
|||||
Для наиболее полного же исследования, согласно современным требованиям лаборатории, необходимо иметь в среднем 7 - 9 мл ликвора, исходя из следующего примерного расчёта (необходимо иметь в виду, что в этот расчёт не входят специальные биохимические методы исследования): |
|||||
|
Морфологические исследования |
1 мл |
|
|
|
Определение белка |
1 - 2 мл |
|
|||
Определение глобулинов |
1 - 2 мл |
|
|||
Коллоидные реакции |
1 мл |
|
|||
Серологические реакции (Вассермана и др.) |
2 мл |
|
|||
|
|
|
|||
Возрастные изменения ликвора. |
|||||
По данным Tassovatz, Г. Д. Ароновича и других, у нормальных, доношенных детей при рождении ликвор прозрачен, но окрашен в желтый цвет (ксантохромия). Жёлтая окраска ликвора соответствует степени общей желтушности младенца (icteruc neonatorum). Количество и качество форменных элементов также не соответствует ликвору взрослого человека в норме. Кроме эритроцитов (от 30 до 60 в 1 мм3), обнаруживается несколько десятков лейкоцитов, из них от 10 до 20% лимфоцитов и 60 - 80 % макрофагов. Общее количество белка также увеличено: от 40 до 60 мл %. При стоянии ликвора образуется нежная плёнка, сходная с той, которая обнаруживается при менингитах, кроме увеличения количества белка, следует отметить нарушения в углеводном обмене. Впервые 4 - 5 дней жизни новорождённого часто обнаруживается гипогликемия и гипогликорахия, что, вероятно, объясняется неразвитостью нервного механизма регуляции углеводного обмена. Внутричерепные кровотечения и особенно кровотечение в надпочечниках усиливают естественную склонность в гипогликемии. |
|||||
У недоношенных детей и при тяжелых родах, сопровождаемых травмами плода, обнаруживаются ещё более резкое изменение ликвора. Так, например, при мозговых кровоизлияниях у новорождённых в 1-е сутки отмечается примесь крови к ликвору. На 2 - 3-и сутки обнаруживается асептическая реакция со стороны мозговых оболочек: резкий гиперальбуминоз в ликворе и плеоцитоз с наличием эритроцитов и полинуклеаров. На 4 - 7-й день воспалительная реакция со стороны мозговых оболочек и сосудов затихает. |
|||||
Общее количество у детей, как и у стариков, резко увеличено по сравнению с взрослым человеком среднего возраста. Однако, судя по химизму ликвора, интенсивность окислительно-восстановительных процессов в мозгу у детей значительно выше, чем у стариков. |
|||||
Состав и свойства ликвора. |
|||||
Цереброспинальная жидкость полученная при спинномозговой пункции так называемый люмбальный ликвор - в норме прозрачна, бесцветна, имеет постоянный удельный вес 1,006 - 1,007; удельный вес цереброспинальной жидкости из желудочков головного мозга (вентрикулярный ликвор) - 1,002 - 1,004. Вязкость цереброспинальной жидкости в норме колеблется от 1,01 до 1,06. Ликвор имеет слабощелочную реакцию рН 7,4 - 7,6. Длительное хранение ликвора вне организма при комнатной температуре приводит к постепенному повышению её рН. Температура цереброспинальной жидкости в субарахноидальном пространстве спинного мозга 37 - 37,5о С; поверхностное натяжения 70 - 71 дин/см; точка замерзания 0,52 - 0,6 С; электропроводимость 1,31 10-2 - 1,3810-2 ом/1см-1; рефрактометрический индекс 1,33502 - 1,33510; газовый состав (в об %) О2 -1,021,66; СО2 - 4564; щелочной резерв 4954 об%. |
|||||
Химический состав цереброспинальной жидкости сходен с составом сыворотки крови 89 - 90% составляет вода; сухой остаток 10 - 11% содержит органические и неорганические вещества, принимающие участие в метаболизме мозга. Органические вещества, содержащиеся в цереброспинальной жидкости представлены белками, аминокислотами, углеводами, мочевиной, гликопротеидами и липопротеидами. Неорганические вещества - электролитами, неорганическим фосфором и микроэлементами. |
|||||
Белок нормальной цереброспинальной жидкости представлен альбуминами и различными фракциями глобулинов. Установлено содержание в цереброспинальной жидкости более 30 различных белковых фракций. Белковый состав цереброспинальной жидкости отличается от белкового состава сывороткой крови наличием двух дополнительных фракций: предальбуминовой (Х-фракций) и Т-фракции, располагающейся между фракциями и -глобулинов. Предальбуминовая фракция в вентрикулярном ликворе составляет 13-20%, в цереброспинальной жидкости, содержащейся в большой цистерне 7-13%, в люмбальном ликворе 4-7% общего белка. Иногда предальбуминовую фракцию в цереброспинальной жидкости обнаружить не удаётся; так как она может маскироваться альбуминами или при очень большом количестве белка в цереброспинальной жидкости вообще отсутствовать. Диагностическое значение имеет белковый коэффициент Кафки (отношение количества глобулинов к количеству альбуминов), который в норме колеблется от 0,2 до 0,3. |
|||||
По сравнению с плазмой крови в цереброспинальной жидкости отмечается более высокое содержание хлоридов, магния, но меньшее содержание глюкозы, калия, кальция, фосфора и мочевины. Максимальное количество сахара содержится в вентрикулярной цереброспинальной жидкости, наименьшее -в цереброспинальной жидкости субарахноидального пространства спинного мозга. 90% сахара составляет глюкоза, 10% декстроза. Концентрация сахара в цереброспинальной жидкости зависит от его концентрации в крови. |
|||||
Количество клеток (цитоз) в цереброспинальной жидкости в норме не превышает 3-4 в 1 мкл, это лимфоциты, клетки арахноидэндотелия, эпендимы желудочков головного мозга, полибласты (свободные макрофаги). |
|||||
Давление ликвора в спинномозговом канале при положении больного лёжа на боку составляет 100-180 мм вод. ст., в положении сидя оно повышается до 250 - 300 мм вод. ст., В мозжечково-мозговой (в большой) цистерне головного мозга давление её несколько снижается, а в желудочках головного мозга составляет всего 190 - 200 мм вод. ст.. У детей давление цереброспинальной жидкости ниже чем у взрослых. |
|||||
ОСНОВНЫЕ БИОХИМИЧЕСКИЕ ПОКАЗАТЕЛИ ЛИКВОРА В НОРМЕ |
|||||
ПЕРВЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ЛИКВОРА |
|||||
Первым механизмом образования ликвора (80%) является продукция осуществляемая сосудистыми сплетениями желудочков головного мозга путём активной секреции железистыми клетками. |
|
|
|||
Сосудистые сплетения головного мозга расположенные в желудочках головного мозга- это сосудисто-эпителиальные образования, являются производными мягкой мозговой оболочки, проникают в желудочки головного мозга и участвуют в образовании сосудистого сплетения. |
|
||||
Сосудистые основы |
|
||||
Сосудистая основа IV желудочка является складкой мягкой мозговой оболочки, выпячивающейся вместе с эпендимой в IV желудочек, и имеет вид треугольной пластинки, прилегающей к нижнему мозговому парусу. В сосудистой основе разветвляются кровеносные сосуды, образующие сосудистую основу IV желудочка. В этом сплетении выделяют: среднюю, косо-продольную часть (залегающую в IV желудочке) и продольную часть (располагающуюся в его латеральном кармане). Сосудистая основа IV желудочка образует передние и задние ворсинчатые ветви IV желудочка. |
|
||||
Передняя ворсинчатая ветвь IV желудочка отходит от передней нижней мозжечковой артерии около клочка и разветвляется в сосудистой основе, формирует сосудистую основу латерального кармана IV желудочка. Задняя ворсинчатая часть IV желудочка отдаётся от задней нижней мозжечковой артерии и ветвится в средней части сосудистой основы. Отток крови от сосудистого сплетения IV желудочка осуществляем по нескольким венам, впадающим в базальную или в большую мозговую вену. Из сосудистого сплетения расположенного в области латерального кармана, кровь оттекает по венам латерального кармана IV желудочка в среднемозговые вены. |
|
||||
Сосудистая основа III желудочка представляет собой тонкую пластинку, расположенную под сводом мозга, между правым и левом таламусом, которую можно видеть после удаления мозолистого тела и свода мозга. Её форма зависит от формы и размеров III желудочка. |
|
||||
В сосудистой основе III желудочка выделяют 3 отдела: средний (заключается между мозговыми полосками таламуса) и два боковых (покрывающих верхние поверхности таламуса); кроме того, различают правый и левый края, верхний и нижний листки. |
|
||||
Верхний листок распространяется на мозолистое тело, свод и далее на полушария головного мозга, где представляет собой мягкую оболочку мозга; нижний листок покрывает верхние поверхности таламуса. От нижнего листка, по бокам от средней линии в полости III желудочка, внедряются ворсины, дольки, узлы сосудистого сплетения III желудочка. Спереди сплетение подходит к межжелудочковым отверстиям, через которые соединяется с сосудистым сплетением боковых желудочков. |
|
||||
В сосудистом сплетении разветвляются медиальные и латеральные задние ворсинчатые ветви задней мозговой артерии и ворсинчатые ветви передней ворсинчатой артерии. |
|
||||
Медиальные задние ворсинчатые ветви через межжелудочковые отверстия анастомозируют с латеральной задней ворсинчатой ветвью. Латеральная задняя ворсинчатая ветвь, располагаясь вдоль подушки таламуса, распространяется в сосудистую основу боковых желудочков. |
|
||||
Отток крови из вен сосудистого сплетения III желудочка осуществляют несколько тонких вен, относящихся к задней группе притоков внутренних мозговых вен. Сосудистое основа боковых желудочков является продолжением сосудистого сплетения III желудочка, которое выпячивается в боковые желудочки с медиальных сторон, через щели между таламусами и сводом. Со стороны полости каждого желудочка сосудистое сплетение покрыто слоем эпителия, который прикрепляется с одной стороны к своду, а с другой - к прикреплённой пластинке таламуса. |
|
||||
Вены сосудистого сплетения боковых желудочков формируются многочисленными извитыми протоками. Между ворсинками тканей сплетений имеется большое количество вен, связанных между собой анастомозами. Многие вены, особенно обращённые в полость желудочка, имеет синусоидальные расширения, образуя петли и полукольца. |
|||||
Сосудистое сплетение каждого бокового желудочка размещается в его центральной части и переходит в нижний рог. Оно формируется передней ворсинчатой артерией, частично ветвями медиальной задней ворсинчатой ветви. |
|||||
Гистология сосудистого сплетения |
|||||
Слизистая оболочка покрыта однослойным кубическим эпителием - сосудистыми эпендимоцитами. У плодов и новорождённых сосудистые эпендимоциты имеют реснички, окружённые микроворсинками. У взрослых на апикальной поверхности клеток реснички сохраняются. Сосудистые эпендимоциты соединены непрерывной запирательной зоной. В близи основания клетки имеется круглое или овальное ядра. Цитоплазма клетки зерниста в базальной части, содержит много крупных митохондрий, пиноцитозных пузырьков, лизосом и других органелл. На базальной стороне сосудистых эпендимоцитов формируются складки. Эпителиальные клетки располагаются на соединительно-тканном слое, состоящем из коллагеновых и эластических волокон, клеток соединительной ткани. |
|||||
Под соединительно-тканным слоем находится собственно сосудистое сплетение. Артерии сосудистого сплетения образуют капилляроподобные сосуды с широким просветом и стенкой, характерной для капилляров. Выросты или ворсинки сосудистого сплетения имеют в середине центральный сосуд, стенка которого состоит из эндотелия; сосуд окружён соединительно-тканными волокнами; ворсинка снаружи покрыта соединительными эпителиоцитами. |
|||||
По данным Минкрота, барьер между кровью сосудистого сплетения и цереброспинальной жидкостью состоит из системы круговых тугих соединений, связывающих прилежащие эпителиальные клетки, гетеролитической системы пиноцитозных пузырьков и лизосом цитоплазмы эпендимоцитов и системы клеточных ферментов, связанных с активным транспортом веществ в обоих направлениях между плазмой и ликвором. |
|||||
Функциональное значение сосудистого сплетения |
|||||
Принципиальное сходство ультраструктуры сосудистого сплетения с такими эпителиальными образованьями, как почечный клубочек даёт основание полагать, что функция сосудистого сплетения связана с продукцией и транспортом ликвора. Вейнди и Джойт называют сосудистое сплетение околожелудочковым органом. Помимо секреторной функции сосудистого сплетения, важное значение имеет регуляция состава ликвора, осуществляемая всасывающими механизмами эпендимоцитов. |
|||||
ВТОРОЙ МЕХАНИЗМ ОБРАЗОВАНИЯ ЛИКВОРА |
|||||
Вторым механизмом образования ликвора (20%) является диализ крови через стенки кровеносных сосудов и эпендиму желудочков мозга, которые функционируют как диализные мембраны. Обмен ионами между плазмой крови и цереброспинальной жидкостью происходит путём активного мембранного транспорта. |
|||||
В продукции спинной жидкости помимо структурных элементов желудочков мозга принимает участие сосудистая сеть мозга и его оболочек, а также клетки мозговой ткани (нейроны и глия). Однако в нормальных физиологических условиях экстровентрикулярная (вне желудочков мозга) продукция цереброспинальной жидкости весьма незначительна. |
|||||
ЦИРКУЛЯЦИЯ ЛИКВОРА |
|||||
Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга - это так называемый боковой путь циркуляции ликвора. |
|||||
В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга - это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны. |
|||||
Мнения о циркуляции ликвора в субарахноидальном пространстве спинного мозга противоречивы. Точка зрения о существовании тока цереброспинальной жидкости и в краниальном направлении пока разделяется не всеми исследователями. Циркуляция цереброспинальной жидкости связана с наличием градиентов гидростатического давления в ликвороносных путях и вместилищах, которые создаются вследствие пульсации внутричерепных артерий, изменения венозного давления и положения тела, а так же других факторов. |
|||||
Отток цереброспинальной жидкости в основном (30- 40 %) происходит через арахноидальные грануляции (пахионовы ворсины) в верхней продольный синус, являющиеся частью венозной системы головного мозга. Арахноидальные грануляции представляют собой отростки паутинной оболочки, которые пронизывают твёрдую мозговую оболочку и располагаются непосредственно в венозных синусах. А теперь рассмотрим строение арахноидальной грануляции более углублено. |
|||||
Арахноидальные грануляции |
|||||
Выросты мягкой оболочки мозга, расположенные на её наружной поверхности впервые описал Пахион (1665 - 1726 гг.) в 1705 году. Он считал, что грануляции являются железами твёрдой оболочки мозга. Некоторые из исследователей (Гиртль) даже считали, что грануляции это патологически злокачественные образования. Кей и Ретциус (Key u. Retzius, 1875) рассматривали их как "вывороты arachnoideae и субарахноидальной ткани", Смирнов определяет их как "дупликатуру arachnoideae", ряд других авторов Иванов, Блуменау, Раубер рассматривает структуру пахионовых грануляций, как разрастания arachnoideae, то есть "узелки соединительной ткани и гистиоцитов", не имеющих внутри каких-либо полостей и "естественных оформленных отверстий". Считается, что грануляции развиваются после 7 - 10 лет. |
|||||
Целый ряд авторов указывает на зависимость внутричерепного давления от дыхания и внутрикровяного давления и потому различает дыхательные и пульсовые движения мозга (Мажанди (magendie, 1825), Экер (Ecker, 1843), Лонге (Longet), Люшка (Luschka, 1885) и др. Пульсация артерий мозга в совокупности своей, и особенно более крупные артерии основания мозга создают условия для пульсаторных движений всего мозга, дыхательные же движения мозга связаны с фазами вдоха и выдоха, когда в связи с вдохом цереброспинальная жидкость оттекает от головы, а в момент выдоха она притекает к головному мозгу и в связи с этим изменяется внутричерепное давление. |
|||||
Ле Гросс Кларк указывал, что образование ворсинок arachnoideae "является ответом на изменение давления со стороны цереброспинальной жидкости". Г. Иванов в своих работах показал, что "весь, значительной по ёмкости, ворсинчатый аппарат паутинной оболочки является регулятором давления в подпаутинном пространстве и в мозге. Это давление, переходя известную грань, измеряемую степенью растяжения ворсинок, быстро передаётся на ворсинчатый аппарат, который таким образом в принципе играет роль как бы предохранителя высокого давления". |
|||||
Наличием у новорождённых и на первом году жизни ребёнка родничков создаётся условие, облегчающие внутричерепное давление путём выпячивания перепонки родничков. Наибольшим по своим размерам является лобный родничок: он является тем естественным эластическим "вентилем", который местно регулирует давление ликвора. При наличии родничков нет, по-видимому, условий для развития грануляции arachnoideae, ибо имеются другие условия, регулирующие внутричерепное давления. С окончанием формирования костного черепа эти условия исчезают, и на смену им начинает появляться новый регулятор внутричерепного давления- ворсинки паутинной оболочки. Поэтому не случайно, что именно в области бывшего лобного родничка, в области лобных углов теменной кости располагаются в большинстве случаев пахионовы грануляции взрослых. |
|||||
В части топографии пахионовы грануляции указывают преимущественное расположение их вдоль сагиттального синуса, поперечного синуса, у начала прямого синуса, на основании мозга, в области Сильвиевой борозды и в других местах. |
|||||
Грануляции мягкой оболочки мозга аналогичны выростам других внутренних оболочек: ворсинам и аркадам серозных оболочек, синовиальных ворсинок суставов и другим. |
|||||
По форме, в частности субдуральное, напоминают колбочку с расширенной дистальной частью и стебельком, прикреплённым к мягкой мозговой оболочке мозга. В зрелых арахноидальных грануляциях дистальная часть ветвится. Являясь производным мягкой оболочки мозга, арахноидальные грануляции образованы двумя соединительными компонентами: арахноидальной оболочкой и субарахноидальной тканью. |
|||||
Арахноидальная оболочка |
|||||
Арахноидальная грануляция включает три слоя: наружный- эндотелиальный, редуцированный, волокнистый и внутренний- эндотелиальный. Субарахноидальное пространство образовано множеством мелких щелей, расположенных между трабекулами. Оно заполнено ликвором и свободно сообщается с ячейками и канальцами субарахноидального пространства мягкой оболочки мозга. В арахноидальной грануляции имеются кровеносные сосуды, первичные волокна и их окончания в виде клубочков, петелек. |
|||||
В зависимости от положения дистальной части различают: субдуральные, интрадуральные, интралакунарные, интрасинусные, интравенозные, эпидуральные, интракраниальные и экстракраниальные арахноидальные грануляции. |
|||||
Арахноидальные грануляции в процессе развития подвергается фиброзу, гиалинизации и обызвествлению с образованием псаммомных телец. На смену гибнущим формам приходят вновь образовавшиеся. Поэтому у человека одновременно встречаются все стадии развития арахноидальной грануляции и их инволюционных превращений. По мере приближения к верхним краям больших полушарий головной мозга число и размеры арахноидальной грануляции резко увеличиваются. |
|||||
Физиологическое значение, ряд гипотез |
|||||
1). Является аппаратом оттока ликвора в венозные русла твёрдой оболочки. |
|||||
2). Являются системой механизма, регулирующего давление в венозных синусах, твёрдой оболочки и субарахноидальном пространстве. |
|||||
3). Является аппаратом, подвешивающим головной мозг в полости черепа и предохраняющим его тонкостенные вены от растяжения. |
|||||
4). Является аппаратом задержки и переработки токсических продуктов обмена, препятствующим проникновению этих веществ в ликвор, и абсорбции белка из ликвора. |
|||||
5). Является сложным барорецептором воспринимающим давление ликвора и крови в венозных синусах. |
|||||
Отток ликвора. |
|||||
Отток ликвора через арахноидальные грануляции- частное выражение общей закономерности- оттока её через всю арахноидальную оболочку. Возникновение омываемых кровью арахноидальных грануляций чрезвычайно мощно развитых у взрослого человека, создаёт наиболее короткий путь оттока ликвора непосредственно в венозные синусы твёрдой оболочки, минуя обходной путь через субдуральное пространство. У маленьких детей и мелких млекопитающих, у которых нет арахноидальных грануляций, выделение ликвора осуществляется через паутинную оболочку в субдуральное пространство. |
|||||
Субарахноидальные щели интрасинусных арахноидальных грануляций, представляющие тончайшие, легко спадающиеся "трубочки", являются клапанным механизмом, открывающимся при повышении давления ликвора в большом субарахноидальном пространстве и закрывающихся при повышении давления в синусах. Этот клапанный механизм обеспечивает одностороннее продвижение цереброспинальной жидкости в синусах и согласно экспериментальным данным, открываются при давлении 20 -50 мм. воз. столба в большом субарахноидальном пространстве. |
|||||
Основным механизмом оттока ликвора из подпаутинного пространства через паутинную оболочку и её дериваты (арахноидальные грануляции) в венозную систему является разница в гидростатическом давлении ликвора и венозной крови. Давление цереброспинальной жидкости в норме превышает венозное давление в верхнем продольном синусе на 15 - 50 мм. вод. ст. Около 10% цереброспинальной жидкости оттекает через сосудистое сплетение желудочков мозга, от 5% до 30% в лимфатическую систему через переневральные пространства черепно-мозговых и спинномозговых нервов. |
|||||
Кроме того, существуют и другие пути оттока цереброспинальной жидкости, направленные из субарахноидального в субдуральное пространство, а затем в сосудистую сеть твёрдой мозговой оболочки или из межмозжечковых пространств мозга в сосудистую систему мозга. Некоторое количество цереброспинальной жидкости резорбируется эпендимой желудочков мозга и сосудистыми сплетениями. |
|||||
Не много отступая от данной темы, нужно сказать, что в изучении невральных влагалищ, и соответственно периневральных влагалищ огромный вклад внёс выдающийся профессор, заведующий кафедрой анатомии человека Смоленского Государственного Медицинского Института (ныне академии) П.Ф.Степанов. В его работах любопытным является тот факт, что изучение велось на эмбрионах самых ранних периодов, 35 мм темено-копчиковой длинны, до сформировавшегося плода. В своей работе по развитию невральных влагалищ, он выделил следующие стадии: клеточную, клеточно-волокнистую, волокнисто- клеточную и волокнистую. |
|||||
Закладка периневрия представлена внутриствольными клетками мезенхимы, имеющими клеточную структуру. Выделение периневрия только начинается на клеточно-волокнистой стадии. У эмбрионов, начиная с 35 мм темено-копчиковой длинны, среди внутристволовых отросчатых клеток мезенхимы, спинномозговых и черепно-мозговых нервов, начинают постепенно преобладать в количественном отношении именно те клетки, которые напоминают контуры первичных пучков. Границы первичных пучков становятся более чёткими особенно в местах внутриствольного выделения ветвей. По мере выделения не многочисленных первичных пучков, вокруг них формируются клеточно-волокнистый периневрий. |
|||||
Так же были замечены различия в структуре периневрия различных пучков. В тех участках, которые возникли более рано, периневрий по своей структуре напоминает эпиневрий, имея волокнисто-клеточное строения, а пучки, возникшие в более поздние сроки, оказываются окружённые периневрием имеющим клеточно-волокнистое и даже клеточное строение. |