
- •Обмен углеводов
- •Реакции моносахаридов
- •Олигосахариды
- •Полисахариды
- •Переваривание углеводов в кишечнике
- •Транспорт глюкозы из крови в клетки
- •Нарушения переваривания и всасывания углеводов
- •Метаболизм глюкозы в клетке
- •Дефосфорилирование глюкозо-6-фосфата
- •Метаболизм глюкозо-6-фосфата
- •Синтез гликогена (гликогеногенез)
- •Распад гликогена (гликогенолиз)
- •Биологическое значение обмена гликогена в печени и мышцах
- •Регуляция синтеза и метаболизма гликогена
- •Регуляция активности гликогенфосфорилазы и глигогенсинтазы
- •1) Фосфорилированная - активная (форма а); 2) дефосфорилированная - неактивная (форма в).
- •Регуляция метаболизма гликогена в печени
- •Регуляция метаболизма гликогена в мышцах
- •Нарушения обмена гликогена
- •Аэробный гликолиз
- •Анаэробный распад глюкозы (анаэробный гликолиз)
- •Значение катаболизма глюкозы
- •Регуляция катаболизма глюкозы
- •Синтез глюкозы в печени (глюконеогенез)
- •Гидролиз фруктозо-1,6-бисфосфата и глюкоза-6-фосфата
- •Синтез глюкозы из лактата
- •Синтез глюкозы из аминокислот
- •Регуляция скорости реакции гликолиза и глюконеогенеза, составляющих субстратные циклы
- •Значение гликолиза в печени для синтеза жиров
- •Регуляция содержания глюкозы в крови
- •Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах
- •Регуляция содержания глюкозы в крови при предельном голодании
- •Регуляция содержания глюкозы в крови в период покоя и во время физической нагрузки
- •Пентозофосфатный путь превращения глюкозы
- •Окислительный этап
- •Неокислительный этап
- •Пентозофосфатный цикл
- •Дефект глюкозо-6-фосфат дегидрогеназы в эритроцитах
- •Метаболизм фруктозы и галактозы
- •Метаболизм фруктозы
- •Нарушения метаболизма фруктозы
- •Метаболизм галактозы
- •Нарушения метаболизма галактозы
Регуляция метаболизма гликогена в мышцах
При высоком инсулин-глюкагоновом индексе инсулин способствует поступлению глюкозы в мышцы с помощью ГЛЮТ-4 и вызывает активацию гликогенсинтазы и ингибирование гликогенфосфорилазы.
При интенсивной мышечной работе мобилизацию гликогена в мышцах стимулируют 3 основных механизма.
В экстремальных ситуациях в мышечных клетках мобилизация гликогена ускоряется адреналином. Связывание адреналина с β-рецепторами, ассоциированными с аденилатциклазной системой, приводит к образованию цАМФ в клетке, а затем фосфорилированию и активации киназы фосфорилазы и гликогенфосфорилазы.
Активация гликогенфосфорилазы мышц.
1 - аллостерическая активация гликогенфосфорилазы В. В процессе мышечного сокращения происходит разрушение АТФ с образованием АМФ, который является аллостерическим активатором гликогенфосфорилазы В;
2 - нервный импульс инициирует освобождение Ca2+ из саркоплазматического ретикулума. Са2+ образует комплекс с кальмодулином, способный активировать киназу фосфорилазы;
3 - активация гликогенфосфорилазы адреналином через аденилатциклазную систему.
Образование цАМФ, стимулированное адреналином, служит сигналом к увеличению производства энергии в результате ускорения расщепления гликогена. Именно в ходе распада, образованного из гликогена глюкозо-6-фосфата, синтезируется АТФ. Инактивация гликогенсинтазы под влиянием адреналина в мышечных клетках проходит так же, как и в печени.
В состоянии покоя при низких концентрациях адреналина в крови гликогенфосфорилаза мышц находится в дефосфорилированном - неактивном состоянии, но распад гликогена всё-таки происходит. Это объясняется тем, что гликогенфосфорилаза активируется способом, не связанным с её фосфорилированием, так как уровень цАМФ в клетке низкий. В данной ситуации происходит аллостерическая активация гликогенфосфорилазы. Активаторами фермента служат АМФ и Н3РО4, образующиеся в клетке при распаде АТФ.
При умеренных мышечных сокращениях, т.е. в ситуации, не требующей участия в регуляции цАМФ, аллостерическим способом активируется киназа фосфорилазы. В данном случае аллостерическими эффекторами служат ионы Са2+, концентрация которых резко возрастает при сокращении мышц в ответ на сигнал от двигательного нерва. Активность фермента снижается сразу же, как только концентрация Са2+ в клетке уменьшается после поступления сигнала к расслаблению мышц. Таким образом, роль ионов Са2+ заключается не только в инициации мышечного сокращения, но также в обеспечении его энергозатрат.
Активация киназы фосфорилазы с помощью ионов Са2+ опосредована кальмодулином. Кальмодулин в данном случае - прочно связанная субъединица фермента.
Регуляция активности киназы фосфорилазы.
Фермент состоит из 4 идентичных белковых комплексов. Каждый комплекс содержит 4 разных субъединицы α, β, γ, δ. На рисунке показан один из тетрамеров. Каталитической активностью обладает γ-субъединица. α- и β- протомеры выполняют регуляторную функцию, они фосфорилируются при участии ПК А. Кальмодулин - δ-субъединица, прочно связанная с ферментом.
А - активация киназы фосфорилазы в результате фосфорилирования;
Б - активация киназы фосфорилазы после присоединения Са2+ к кальмодулину.
В мышцах в период пищеварения, если он совпадает с состоянием покоя, происходит стимуляция синтеза гликогена. Мышечная работа во время пищеварения замедляет процесс синтеза гликогена, так как при этом мышцы используют для окисления глюкозу крови, поступающую из кишечника.
В переключении мобилизации гликогена на запасание глюкозы участвует инсулин. Как уже говорилось, глюкоза поступает в мышечные и жировые клетки с помощью глюкозо-транспортёров ГЛЮТ-4. Транспортёры в отсутствие инсулина находятся в цитоплазме клеток, и глюкоза клетками не используется, так как в мембране нет белков-переносчиков. Инсулин стимулирует перемещение ГЛЮТ-4 и встраивание их в мембрану клеток. Механизм подобного влияния инсулина изучен недостаточно, но определены его основные этапы. Цепь событий при стимуляции инсулином потребления глюкозы мышцами и жировыми клетками выглядит следующим образом:
-
рецептор инсулина (IR) - инсулинстимулируемая тирозиновая протеинкиназа - обязательный посредник всех действий инсулина;
-
активированный инсулином IR фосфорилирует специфические цитоплазматические белки - субстраты инсулина (IRS);
-
фосфорилированный субстрат (в основном IRS-1) соединяется с фосфатидилинозитол-3-киназой (ФИ-3-киназа) и активирует этот фермент;
-
активная ФИ-3-киназа катализирует фосфорилирование по позиции 3 ряд компонентов инозитолфосфатной сигнальной системы, приводящей к стимуляции транслокации ГЛЮТ из цитозоля в плазматическую мембрану;
-
глюкоза с помощью ГЛЮТ-4 поступает в мышечные клетки и включается в синтез гликогена.
Влияние инсулина на скорость синтеза гликогена в мышцах осуществляется посредством изменения активности гликогенсинтазы и гликогенфосфорилазы - ключевых ферментов, о чём уже говорилось при обсуждении влияния инсулина на метаболизм гликогена в печени.