
- •1.Метод наименьших квадратов: алгоритм метода; условия применения.
- •2.Типы переменных в эконометрических моделях. Структурная и приведённая формы спецификации эконометрических моделей.
- •3. Статистические свойства оценок параметров парной регрессионной модели
- •4. Этапы построения эконометрических моделей.
- •5.Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации сервиса Регрессия. (10) стр 41
- •6.Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам. (30) стр.24-25,
- •7. Классическая парная регресионная модель. Спецификация модели. Теорема Гаусса-Маркова.
- •8. Метод наименьших квадратов: алгоритм метода, условия применения.
- •9.Идентификация отдельных уравнений системы одновременных уравнений: порядковое условие. (30)
- •Необходимое условие идентифицируемости
- •10.Оценка параметров парной регрессионной модели методом наименьших квадратов. (10)
- •11.Фиктивные переменные: определение, назначение, типы.
- •12.Автокорреляция случайного возмущения. Причины. Последствия.
- •13.Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •14.Интервальная оценка ожидаемого значения зависимой переменной в парной регрессионной модели.
- •15. Тест Чоу на наличие структурных изменений в регрессионной модели. (20) стр. 59,60
- •16. Алгоритм проверки адекватности парной регрессионной модели. (20) стр. 37, 79
- •17. Коэффициент детерминации в парной регрессионной модели.
- •18. Оценка параметров множественной регрессионной модели методом наименьших квадратов.
- •20. Гетероскедастичность случайного возмущения. Причины. Последствия. Тест gq(20)
- •21.Фиктивная переменная наклона: назначение; спецификация регрессионной модели с фиктивной переменной наклона; значение параметра при фиктивной переменной. (20) стр.65
- •22..Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений. (20) стр 33
- •23. Структурная и приведённая формы спецификации эконометрических моделей.
- •24. Гетероскедастичность случайного возмущения. Причины. Последствия. Алгоритм теста Голдфельда-Квандта на наличие или отсутствие гетероскедастичности случайных возмущений.
- •Алгоритм теста Голдфелда-Квандта на наличие (отсутствие) гетероскедастичности случайных возмущений.
- •25. Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам.
- •26. Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов
- •27.Проблема мультиколлинеарности в моделях множественной регрессии.Признаки мультиколлениарности.
- •28.Что такое логит,тобит,пробит.
- •29. Что такое Метод наибольшего правдоподобия стр. 62.
- •30. Что такое стационарный процесс?
- •31.Свойства временных рядов.
- •32.Модели ar и var .
- •33. Идентифицируемость системы.
- •34. Настройка модели с системой одновременных уравнений.
- •35.Что такое метод Монте-Карло стр 53
- •36.Оценить качество модели по f, gq, dw (линейнные).Стр.33, 28-29
- •37. Оценка погрешностей параметров эконометрической модели методом Монте-Карло .
- •38. Отражение в модели влияния неучтённых факторов. Предпосылки теоремы Гаусса-Маркова.
- •39.Модели временных рядов. Свойства рядов цен акций на бирже (20) с.93.
- •40. Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение. (20) с.12-21
- •41. Оценка параметров парной регрессионной модели методом наименьших квадратов с использованием сервиса Поиск решения.
- •42. Проверка статистических гипотез, t-статистика Стьюдента, доверительная вероятность и доверительный интервал, критические значения статистики Стьюдента. Что такое “толстые хвосты”?
- •43.Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •44. Частные коэффициенты детерминации.
- •46. Экономический смысл коэффициентов линейного и степенного уравнений регрессии.
- •47.Оценка коэффициентов модели Самуэльсона-Хикса
- •48. Ошибки от включения в модель незначимых переменных или исключения значимых.С.80
- •49. Исследование множественной регрессионной модели с.74-79.
- •50. Мультиколлинеарность: чем плоха, как обнаружить и как бороться.
- •51. Признаки стационарности стохастического процесса. Что такое «Белый шум»? с.100
- •52. Структурная и приведённая формы спецификации эконометрических моделей.
- •53. Алгоритм проверки значимости регрессора в парной регрессионной модели. По t-статистике, по f-статистике.
- •54.Свойства рядов цен на фондовом рынке. Принципы построения портфеля Марковица с.93,102
- •55.Динамическая модель из одновременных линейных уравнений (привести пример) с.105.
- •56. Метод наибольшего правдоподобия: принципы и целесообразность использования
- •57. Этапы исследования модели множественной регрессии с.74-79.
28.Что такое логит,тобит,пробит.
Логит-модель— эконометрическая модель, относящаяся к классу таких моделей, для анализа которых неприменимы обычные методы регрессионного анализа. Отличие ее состоит в том, что в ней зависимая переменная может принимать лишь ограниченное число значений, в простейшем случае — либо 0, либо 1 Задача состоит в том, чтобы определить вероятность принятия зависимой переменной значения 0 или 1. Здесь в качестве аналитического средства применяется логистическая функция (выраженная в логарифмической форме), отсюда и название.
Тобит-модели— один из видов эконометрических моделей, не поддающихся исследованию стандартными методами регрессионного анализа, поскольку включают переменные, представляющие собой смесь дискретных и непрерывных величин. Например, таковы модели рынков, на которых часть цен лимитированы, а часть — свободны.
Пробит-модели - вид эконометрических моделей, которые не поддаются исследованию стандартными методами регрессионного анализа, поскольку содержат дихотомические переменные (все или ничего). Примеры — модели принятия решений: владеть собственностью или арендовать ее, модели выбора маршрута путешествия или выбора профессии
29. Что такое Метод наибольшего правдоподобия стр. 62.
Метод максимального правдоподобия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия[1]. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия. Метод максимального правдоподобия был проанализирован, рекомендован и значительно популяризирован Р. Фишером
Оценка максимального правдоподобия является популярным статистическим методом, который используется для создания статистической модели на основе данных, и обеспечения оценки параметров модели.
Метод максимального правдоподобия соответствует многим известным методам оценки в области статистики. Например, вы интересуетесь таким антропометрическим параметром, как рост жителей России. Предположим, у вас имеются данные о росте некоторого количества людей, а не всего населения. Кроме того предполагается, что рост является нормально распределенной величиной с неизвестной дисперсией и средним значением. Среднее значение и дисперсия роста в выборке являются максимально правдоподобными к среднему значению и дисперсии всего населения.
Для фиксированного набора данных и базовой вероятностной модели, используя метод максимального правдоподобия, мы получим значения параметров модели, которые делают данные «более близкими» к реальным. Оценка максимального правдоподобия дает уникальный и простой способ определить решения в случае нормального распределения.
Метод оценки максимального правдоподобия применяется для широкого круга статистических моделей, в том числе:
• линейные модели и обобщенные линейные модели;
• факторный анализ;
• моделирование структурных уравнений;
• многие ситуации, в рамках проверки гипотезы и доверительного интервала формирования;
• дискретные модели выбора.