
- •Министерство образования и науки Республики Казахстан
- •1. Учебная программа дисциплины – Syllabus
- •1. 1. Данные о преподавателях:
- •1.1 Данные о дисциплине:
- •Выписка из учебного плана
- •1.5. Краткое описание дисциплины
- •1.6. Перечень и виды заданий и график их выполнения:
- •Виды заданий и сроки их выполнения
- •1.7. Список литературы
- •1.8. Контроль и оценка знаний
- •Распределение рейтинговых баллов по видам контроля
- •Календарный график сдачи всех видов контроля
- •Оценка знаний студентов
- •2. Содержание Активного раздаточного материала
- •2.1 Тематический план курса составляется в виде таблицы, где указываются наименование темы и количество академических часов, предусмотренных для каждой темы. Тематический план курса
- •2.2 Конспект лекционных занятий
- •Глава 1. Основные понятия и определения статистики
- •Тема 2. Показатели описательной статистики. Среднее, дисперсия, стандартное отклонение, эксцесс, асимметрия, интервалы. Компьютерные технологии получения дескриптивной статистики.
- •Глава 2. Выборки.
- •Тема 5. Анализ одной выборки. Анализ однородности выборки. Доверительные интервалы для среднего. Доверительные интервалы для средних выборок. Компьютерные технологии анализа.
- •Тема 6. Анализ двух выборок. Выявление достоверности различий. Параметрические и непараметрические методы анализа выборок. Компьютерные технологии анализа одной выборки.
- •Глава 3. Анализ статданных.
- •Тема 7. Дисперсионный анализ статданных. Однофакторный дисперсионный анализ статистических данных. F- тест для для дисперсий. Компьютерные технологии анализа.
- •Тема 8. Корреляционный анализ статданных. Коэффицент корреляции Пирсона. Коэффициент ранговой корреляции. Ложная и истинная корреляция Компьютерные технологии анализа.
- •Глава 4. Регрессионный анализ.
- •Тема 9. Регрессионный анализ статданных. Простая линейная регрессии. Оценивание параметров линейной регрессиии методом наименьших квадратов, коэффициент детерминации.
- •Тема 10. Оценка существенности параметров линейной регрессии. Оценка качества регрессии f-критерий Фишера, t-статистика. Проверка значимости параметров регрессии. Понятие нелинейной регрессии.
- •Тема 11. Множественная регрессия. Многомерная регрессионая модель. Фиктивные переменные. Кодирование значений качественных переменных. Мультиколлинеарность.
- •Глава 5. Анализ временных рядов.
- •Тема 12. Анализ статданных в виде временных рядов. Временные ряды и их характеристики. Аддитивная и мультипликативная модель. Декомпозиция временного ряда.
- •Тема 13. Анализ и получение тренда. Методы аналитического выравнивания. Метод скользящего среднего. Метод экспоненциального сглаживания. Оценка точности трендовой модели.
- •Тема 14. Модели временных рядов. Понятие об авторегрессионных моделях временных рядов. Коэффицент автокорреляции и автокорреляционная функция.Тест Дарбина-Уотсона.
- •Тема 15. Анализ моделей временных рядов. Решение проблемы автокорреляции. Учет сезонности. Коинтеграция временных рядов.Тест Энгла - Гренжера. Современные тенденции статанализа.
- •2.3 Планы лабораторных занятий
- •Технология построения трендов в Microsoft Excel Порядок выполнения лабораторной работы
- •Форматирование метки линии тренда.
- •Задание на выполнение лабораторной работы:
- •Задание на выполнение лабораторной работы
- •2.4 Планы занятий в рамках самостоятельной работы студентов под руководством преподаватля (срсп)
- •Тема 1. Функции распределения дискретной случайной величины. Биномиальное распределение. Применение компьютерных технологий при статистическом исследовании биномиального распределения. (2 ч.)
- •Тема 3. Функции распределения дискретной случайной величины. Распределение Пуассона. Применение компьютерных технологий при статистическом исследовании распределения Пуассона. (2 ч.)
- •Тема 4. Функции распределения непрерывной случайной величины. Гауссово распределение. Применение компьютерных технологий при статистическом исследовании Гауссово распределения. (2 ч.)
- •Тема 5. Функции распределения непрерывной случайной величины. Распределение хи-квадрат. Применение компьютерных технологий при статистическом исследовании распределения хи-квадрат. (2 ч.)
- •Тема 6. Функции распределения непрерывной случайной величины. Распределение Стьюдента. Применение компьютерных технологий при статистическом исследовании распределения Стьюдента. (2 ч.)
- •Тема 7. Функции распределения непрерывной случайной величины. Распределение Фишера. Применение компьютерных технологий при статистическом исследовании распределения Фишера. (2 ч.)
- •Тема 9. Генерация случайных чисел. Применение компьютерных технологий при генерации случайных чисел. (2 ч.)
- •Тема 10. Статистические гипотезы. Одновыборочный z-тест для средних величин. Применение компьютерных технологий при проведении одновыборочного z-теста для средних величин. (2 ч.)
- •Тема 11. Статистические гипотезы. Двухвыборочный z-тест для средних величин. Применение компьютерных технологий при проведении двухвыборочного z-теста для средних величин. (2 ч.)
- •Тема 12. Статистические гипотезы. Одновыборочный t-тест для средних величин. Применение компьютерных технологий при проведении одновыборочного t-теста для средних величин. (2 ч.)
- •Тема 15. Статистические гипотезы. Парный двухвыборочный t-тест для средних величин. Применение компьютерных технологий при проведении парного двухвыборочного t-теста для средних величин. (2 ч.)
- •2.5 Планы занятий в рамках самостоятельной работы студентов (срс)
- •Тема 1. Регрессионный анализ с применением компьютерных технологий. Интерпретация результатов.
- •Тема 2. Регрессионный анализ. Метод наименьших квадратов (мнк).Интерпретация результатов.
- •Тема 3. Регрессионный анализ. Анализ вариации зависимой переменной.
- •Тема 4. Регрессионный анализ. Условия Гаусса-Маркова по классической нормальной линейной регрессионной модели.
- •Тема 5. Регрессионный анализ. Стандартная ошибка регрессии.
- •Тема 6. Регрессионный анализ. Стандартные ошибки коэффициентов регрессии.
- •Тема 7. Регрессионный анализ. Проверка гипотез по коэффициентам регрессии.
- •Тема 8. Регрессионный анализ. Нелинейные регрессии.
- •Тема 9. Регрессионный анализ. Прогнозирование в регрессионных моделях.
- •Тема 10. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Получение тренда. Интерпретация результатов.
- •Тема 11. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Исследование автокорреляции данных временного ряда.
- •Тема 12. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Тест Дарбина-Уотсона.
- •Тема 13. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Тест на коинтеграцию на основе критерия Энгла-Грэнжера.
- •Тема 14. Статистический программный инструментарий. Обзор статистических функций ms Excel.
- •Тема 15. Статистический программный инструментарий. Обзор возможностей пакета "Анализа данных" ms Excel.
- •2.6. Тестовые задания для самоконтроля с указанием ключей правильных ответов
- •24. Имеют ли в общем случае смысловую нагрузку свободный член уравнения линейной регрессии?
- •25. Что такое корреляционные поля?
- •26. Что такое авторегрессионая модель временного ряда?
- •27. Что означает регрессионная модель с лагированными переменными?
- •28. Какой показатель определяется отношением дисперсии результативного признака регрессии к общей дисперсии результативного признака?
- •29. Какой критерий применяется для проверки гипотезы - средние двух выборок относятся к одной и той же совокупности?
- •30. Какой метод применяется для проверки гипотезы - относится та или иной вариант к данной статистической совокупности?
- •Перечень экзаменационных вопросов по пройденному курсу
- •Глоссарий
- •Выходные сведения
Тема 10. Оценка существенности параметров линейной регрессии. Оценка качества регрессии f-критерий Фишера, t-статистика. Проверка значимости параметров регрессии. Понятие нелинейной регрессии.
Так как в большинстве
случаев уравнение регрессии приходится
строить на выборочных данных, то возникает
вопрос об адекватности построения
уравнения данных генеральной совокупности.
Для этого проводится проверка
статистической значимости коэффициента
детерминации
на основе F-критерия Фишера:
где
- число наблюдений, а
- число факторов в уравнении регрессии.
В математической
статистике доказывается, что если
гипотеза
:
= 0 выполняется, то величина F имеет
F-распределение с
и
степенями свободы,
т.е.
,
).
Гипотеза
:
= 0 о незначимости коэффициента
детерминации
отвергается, если
.
При значениях
> 0,7 считается, что вариация результативного
признака обусловлена, в основном,
влиянием включенных в регрессионную
модель факторов
.
Возможна ситуация, когда часть вычисленных
коэффициентов регрессии не дает
необходимой степени значимости, т.е.
значения данных коэффициентов меньше
их стандартной ошибки. В этом случае
такие коэффициенты должны быть исключены
из уравнения регрессии. Поэтому проверка
адекватности построенного уравнения
регрессии наряду с проверкой значимости
коэффициента детерминации включает в
себя также и проверку значимости каждого
коэффициента регрессии. Значимость
коэффициентов регрессии проверяется
с помощьюt-критерия
Стьюдента:
,
где
-
стандартное значение ошибки для
коэффициента регрессии
.
В математической
статистике доказывается, что если
гипотеза
:
= 0 выполняется, то величина t имеет
распределение Стьюдента с
степенями свободы,т.е.
.
Гипотеза
:
= 0 о незначимости коэффициента регрессии
отвергается, если
Кроме того, зная
значение
,
можно найти границы доверительных
интервалов для коэффициентов регрессии
Нелинейная регрессия.
Если, например, между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней ги-
перболы
,
параболы второй степени
и
др. Здесь
-
остаточная компонента от регрессии.
Различают два класса нелинейных регрессий:
• регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но нелинейные по оцениваемым параметрам;
• регрессии, нелинейные по оцениваемым параметрам.
Примером
нелинейной регрессии по включаемым в
нее объясняющим переменным могут служить
следующие функции: полиномы разных
степеней, равносторонняя гипербола. К
нелинейным регрессиям
по оцениваемым параметрам относятся
функции, например, степенная -, показательная
,
экспоненциальная -
.
Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени
,
заменяя
переменные
,
получим двухфакторное уравнение
линейной регрессии:
,
для оценки параметров которого, используется МНК.
Соответственно для полинома третьего порядка получим трехфакторную модель линейной регрессии и т.д. Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров и проверки гипотез. Как показывает опыт большинства исследователей, среди нелинейной полиномиальной регрессии чаще всего используется парабола второй степени; в отдельных случаях - полином третьего порядка. Ограничения в использовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и соответственно менее однородна совокупность по результативному признаку. Иначе обстоит дело с регрессией, нелинейной по оцениваемым параметрам. Данный класс нелинейных моделей подразделяется на два типа: нелинейные модели внутренне линейные и нелинейные модели внутренне нелинейные. Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду. Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции. Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:
,
где
у
- спрашиваемое
количество; х-
цена;
-
случайная ошибка.
Данная
модель нелинейна относительно оцениваемых
параметров, ибо включает параметры
и
неаддитивно.
Однако ее можно считать внутренне
линейной, ибо логарифмирование данного
уравнения по основанию е
приводит
его к линейному виду:
.
Соответственно
оценки параметров
и
могут
быть найдены МНК. В рассматриваемой
степенной функции предполагается, что
случайная ошибка
мультипликативно связана с объясняющей
переменной
.
Литература:
1осн. [273-285], 2 осн. [42-57],3 осн. [41-80], 2доп. [70-77], 3 доп. [260-267], 4 доп. [135-142], 6 [206-214].
Контрольные вопросы
1. Каков смысл применения F-критерия Фишера при регрессионном анализе?
2. Какие факторы учитываются при применении F-критерия Фишера при регрессионном анализе ?
3. Как проводится оценка значимости коэффициентов регрессии?
4. Каков смысл применения t-критерия Стьюдента при оценке значимости коэффициентов регрессии?
5. Каковы основные классы нелинейных регрессий?