
- •Министерство образования и науки Республики Казахстан
- •1. Учебная программа дисциплины – Syllabus
- •1. 1. Данные о преподавателях:
- •1.1 Данные о дисциплине:
- •Выписка из учебного плана
- •1.5. Краткое описание дисциплины
- •1.6. Перечень и виды заданий и график их выполнения:
- •Виды заданий и сроки их выполнения
- •1.7. Список литературы
- •1.8. Контроль и оценка знаний
- •Распределение рейтинговых баллов по видам контроля
- •Календарный график сдачи всех видов контроля
- •Оценка знаний студентов
- •2. Содержание Активного раздаточного материала
- •2.1 Тематический план курса составляется в виде таблицы, где указываются наименование темы и количество академических часов, предусмотренных для каждой темы. Тематический план курса
- •2.2 Конспект лекционных занятий
- •Глава 1. Основные понятия и определения статистики
- •Тема 2. Показатели описательной статистики. Среднее, дисперсия, стандартное отклонение, эксцесс, асимметрия, интервалы. Компьютерные технологии получения дескриптивной статистики.
- •Глава 2. Выборки.
- •Тема 5. Анализ одной выборки. Анализ однородности выборки. Доверительные интервалы для среднего. Доверительные интервалы для средних выборок. Компьютерные технологии анализа.
- •Тема 6. Анализ двух выборок. Выявление достоверности различий. Параметрические и непараметрические методы анализа выборок. Компьютерные технологии анализа одной выборки.
- •Глава 3. Анализ статданных.
- •Тема 7. Дисперсионный анализ статданных. Однофакторный дисперсионный анализ статистических данных. F- тест для для дисперсий. Компьютерные технологии анализа.
- •Тема 8. Корреляционный анализ статданных. Коэффицент корреляции Пирсона. Коэффициент ранговой корреляции. Ложная и истинная корреляция Компьютерные технологии анализа.
- •Глава 4. Регрессионный анализ.
- •Тема 9. Регрессионный анализ статданных. Простая линейная регрессии. Оценивание параметров линейной регрессиии методом наименьших квадратов, коэффициент детерминации.
- •Тема 10. Оценка существенности параметров линейной регрессии. Оценка качества регрессии f-критерий Фишера, t-статистика. Проверка значимости параметров регрессии. Понятие нелинейной регрессии.
- •Тема 11. Множественная регрессия. Многомерная регрессионая модель. Фиктивные переменные. Кодирование значений качественных переменных. Мультиколлинеарность.
- •Глава 5. Анализ временных рядов.
- •Тема 12. Анализ статданных в виде временных рядов. Временные ряды и их характеристики. Аддитивная и мультипликативная модель. Декомпозиция временного ряда.
- •Тема 13. Анализ и получение тренда. Методы аналитического выравнивания. Метод скользящего среднего. Метод экспоненциального сглаживания. Оценка точности трендовой модели.
- •Тема 14. Модели временных рядов. Понятие об авторегрессионных моделях временных рядов. Коэффицент автокорреляции и автокорреляционная функция.Тест Дарбина-Уотсона.
- •Тема 15. Анализ моделей временных рядов. Решение проблемы автокорреляции. Учет сезонности. Коинтеграция временных рядов.Тест Энгла - Гренжера. Современные тенденции статанализа.
- •2.3 Планы лабораторных занятий
- •Технология построения трендов в Microsoft Excel Порядок выполнения лабораторной работы
- •Форматирование метки линии тренда.
- •Задание на выполнение лабораторной работы:
- •Задание на выполнение лабораторной работы
- •2.4 Планы занятий в рамках самостоятельной работы студентов под руководством преподаватля (срсп)
- •Тема 1. Функции распределения дискретной случайной величины. Биномиальное распределение. Применение компьютерных технологий при статистическом исследовании биномиального распределения. (2 ч.)
- •Тема 3. Функции распределения дискретной случайной величины. Распределение Пуассона. Применение компьютерных технологий при статистическом исследовании распределения Пуассона. (2 ч.)
- •Тема 4. Функции распределения непрерывной случайной величины. Гауссово распределение. Применение компьютерных технологий при статистическом исследовании Гауссово распределения. (2 ч.)
- •Тема 5. Функции распределения непрерывной случайной величины. Распределение хи-квадрат. Применение компьютерных технологий при статистическом исследовании распределения хи-квадрат. (2 ч.)
- •Тема 6. Функции распределения непрерывной случайной величины. Распределение Стьюдента. Применение компьютерных технологий при статистическом исследовании распределения Стьюдента. (2 ч.)
- •Тема 7. Функции распределения непрерывной случайной величины. Распределение Фишера. Применение компьютерных технологий при статистическом исследовании распределения Фишера. (2 ч.)
- •Тема 9. Генерация случайных чисел. Применение компьютерных технологий при генерации случайных чисел. (2 ч.)
- •Тема 10. Статистические гипотезы. Одновыборочный z-тест для средних величин. Применение компьютерных технологий при проведении одновыборочного z-теста для средних величин. (2 ч.)
- •Тема 11. Статистические гипотезы. Двухвыборочный z-тест для средних величин. Применение компьютерных технологий при проведении двухвыборочного z-теста для средних величин. (2 ч.)
- •Тема 12. Статистические гипотезы. Одновыборочный t-тест для средних величин. Применение компьютерных технологий при проведении одновыборочного t-теста для средних величин. (2 ч.)
- •Тема 15. Статистические гипотезы. Парный двухвыборочный t-тест для средних величин. Применение компьютерных технологий при проведении парного двухвыборочного t-теста для средних величин. (2 ч.)
- •2.5 Планы занятий в рамках самостоятельной работы студентов (срс)
- •Тема 1. Регрессионный анализ с применением компьютерных технологий. Интерпретация результатов.
- •Тема 2. Регрессионный анализ. Метод наименьших квадратов (мнк).Интерпретация результатов.
- •Тема 3. Регрессионный анализ. Анализ вариации зависимой переменной.
- •Тема 4. Регрессионный анализ. Условия Гаусса-Маркова по классической нормальной линейной регрессионной модели.
- •Тема 5. Регрессионный анализ. Стандартная ошибка регрессии.
- •Тема 6. Регрессионный анализ. Стандартные ошибки коэффициентов регрессии.
- •Тема 7. Регрессионный анализ. Проверка гипотез по коэффициентам регрессии.
- •Тема 8. Регрессионный анализ. Нелинейные регрессии.
- •Тема 9. Регрессионный анализ. Прогнозирование в регрессионных моделях.
- •Тема 10. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Получение тренда. Интерпретация результатов.
- •Тема 11. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Исследование автокорреляции данных временного ряда.
- •Тема 12. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Тест Дарбина-Уотсона.
- •Тема 13. Временные ряды. Анализ временных рядов с применением компьютерных технологий. Тест на коинтеграцию на основе критерия Энгла-Грэнжера.
- •Тема 14. Статистический программный инструментарий. Обзор статистических функций ms Excel.
- •Тема 15. Статистический программный инструментарий. Обзор возможностей пакета "Анализа данных" ms Excel.
- •2.6. Тестовые задания для самоконтроля с указанием ключей правильных ответов
- •24. Имеют ли в общем случае смысловую нагрузку свободный член уравнения линейной регрессии?
- •25. Что такое корреляционные поля?
- •26. Что такое авторегрессионая модель временного ряда?
- •27. Что означает регрессионная модель с лагированными переменными?
- •28. Какой показатель определяется отношением дисперсии результативного признака регрессии к общей дисперсии результативного признака?
- •29. Какой критерий применяется для проверки гипотезы - средние двух выборок относятся к одной и той же совокупности?
- •30. Какой метод применяется для проверки гипотезы - относится та или иной вариант к данной статистической совокупности?
- •Перечень экзаменационных вопросов по пройденному курсу
- •Глоссарий
- •Выходные сведения
Глава 4. Регрессионный анализ.
Тема 9. Регрессионный анализ статданных. Простая линейная регрессии. Оценивание параметров линейной регрессиии методом наименьших квадратов, коэффициент детерминации.
Простая линейная
регрессия. На предыдущей лекции были
рассмотрены основные понятия и методы
корреляционного анализа, позволяющего
решать задачи определения тесноты и
направления связи, существующей
между изучаемыми величинами. Регрессионный
анализ представляет собой следующий
этап статистического анализа и позволяет
предсказать значения случайной величины
на основании значений одной или нескольких
независимых случайных величин.
Достижение этой
цели оказывается возможным за счет
определения вида аналитического
выражения, описывающего связь зависимой
случайной величины
(которую в этом случае называют
результативным признаком) с независимыми
случайными величинами
(которые
называют факторами).
Форма связи
результативного признака
с факторами
называется уравнением регрессии. В
зависимости от типа выбранного уравнения
различают линейную и нелинейную
регрессию (например, квадратичную,
логарифмическую, экспоненциальную
и т.д.).
Регрессия может быть парная (простая) и множественная, что определяется числом взаимосвязанных признаков. Если исследуется связь между двумя признаками (результативным и факторным), то регрессия называется парной (простой); к этому типу относится, например, исследование зависимости между продажами и затратами на рекламу. Если исследуется связь между тремя и более признаками, то регрессия называется множественной (многофакторной) - например, если исследуется связь между уровнем потребления, доходом, финансовым состоянием и размером семьи.
На этапе регрессионного анализа решаются следующие основные задачи:
1. Выбор общего вида уравнения регрессии и определение параметров регрессии.
2. Определение в регрессии степени взаимосвязи результативного признака и факторов, проверка общего качества уравнения регрессии.
3. Проверка статистической значимости каждого коэффициента уравнения регрессии и определение их доверительных интервалов.
Простая линейная регрессия.
Выбор общего вида уравнения регрессии является важной задачей, поскольку форма связи выявляет механизм получения значений зависимой случайной переменной Y. Форма связи может быть линейной или нелинейной. Линейная связь описывается линейным уравнением. Уравнение простой линейной регрессии имеет вид:
График этой функции называется линией регрессии. Линия регрессии точнее всего отражает распределение экспериментальных значений на диаграмме рассеяния, а угол ее наклона характеризует степень зависимости между двумя переменными.
Параметры уравнения регрессии могут быть определены с помощью метода наименьших квадратов. При определении параметров модели методом наименьших квадратов минимизируется сумма квадратов остатков.
Для нахождения
оценок параметров
и
доставляющих минимум функции
,
вычисляются и приравниваются к
нулю частные производные этой
функции
=0
и
=0,
откуда система нормальных уравнений принимает следующий вид:
После простых преобразований имеем:
Тогда коэффициент наклона прямой регрессии равен:
а свободный член регрессии
.
Для свободного члена последнее равенство можно переписать следующим образом:
откуда
.
Это означает, что средняя точка (х, у)
совместного распределения величин X, Y
всегда лежит на линии регрессии. Поэтому
при замене
на
получается
,
т.е. среднее
заменяет
.
Для анализа общего
качества уравнения линейной регрессии
используется коэффициент детерминации
,
который получается посредством
возведения
в квадрат коэффициента корреляции.
Коэффициент детерминации показывает
в какой мере изменчивость величины У
объясняется поведением величины X.
Haпример, если коэффициент корреляции
совокупных данных, относящихся к
производственным затратам, равняется
0,8, то коэффициент детерминации
= 0,82 = 0,64. Это значение говорит о том, что
64% вариации (изменчивости) затрат
объясняется количеством изделий,
выпущенных за определеный период.
Остальная часть (36%) общих затрат
объясняется другими причинами.
Для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу в современных статистических пакетах имеются соответствующие функции и процедуры.
Литература:
1осн. [273-285], 2осн. [42-74], 6осн. [22-30], 2доп. [60-76], 3доп. [260-266], 4 доп. [135-142], 6доп. [206-214].
Контрольные вопросы
1. Какова основная задача регрессионого анализа статданных?
2. Какие могут быть формы связи между факторными и результативными признаками?
3. Каковы основные этапы регрессионного анализа?
4. Каким методом может быть найдено регрессионное уравнение?
5. Что отражает коэффициент детерминации?