Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЕНКМ_4 часть

.pdf
Скачиваний:
37
Добавлен:
12.03.2015
Размер:
2.57 Mб
Скачать

ствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Первичные черные дыры. Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц.

Квантовые черные дыры. Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц.

7.2. Изучение черных дыр. Свойства черных дыр

Изучая фундаментальные свойства материи и пространствавремени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи них проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замед-

101

лится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2)Каким бы сложным ни было исходное тело, после его сжатия

вчерную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.) в ходе коллапса «стираются». То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: «Черная дыра не имеет волос».

3)Если исходное тело вращалось, то вокруг черной дыры сохраняется «вихревое» гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 г. нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

4)Вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Англ. физик С. Хокинг определяет сингулярность как «место, где разрушается классическая концепция пространства и

102

времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени».

5) Кроме этого С. Хокинг открыл возможность очень медленного самопроизвольного квантового «испарения» черных дыр. В 1974 г. он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Идея об «испарении» черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

7.3. Поиск черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличие в реальном мире. Открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом

103

до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости и разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн. масс Солнца.

Подумайте и ответьте:

1.Как связано понятие черной дыры с сингулярностью пространст- ва-времени?

2.Опишите основные типы и свойства черных дыр.

3.Как в настоящее время осуществляется поиск черных дыр во Вселенной?

104

8. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Основы всей физической науки были поставлены под сомнение в 1905 г., когда молодой никому не известный физик опубликовал небольшую научную статью под названием «К электродинамике движущихся тел». В этой исторической статье А. Эйнштейну удалось разрешить все трудности, связанные с теорией электромагнетизма Максвелла. В частности, Эйнштейн переформулировал физику таким образом, чтобы основные законы природы были одинаковы для всех наблюдателей независимо от того, как они движутся относительно друг друга. Заключение о том, что законы природы должны быть одинаковыми для всех, называется принципом ковариантности. Если математические уравнения физики записаны таким образом, что они не зависят от движения наблюдателя, то говорят, что эти фундаментальные уравнения записаны в ковариантном виде. За столь изящный подход к физической реальности приходится платить довольно дорогой ценой: для разных наблюдателей некоторые основные величины, такие, как масса, время и длина, оказываются неодинаковыми.

Рис. 8.1: Мысленный эксперимент, демонстрирующий ковариантную формулировку теории электромагнетизма.

105

А вот пример, позволяющий лучше постичь смысл ковариантной формулировки теории электромагнетизма. Пусть Андрей стоит около электрически заряженного металлического шара (рис. 8.1). Он будет наблюдать просто электрическое поле, окружающее шар, и может измерить напряженность этого поля, пользуясь простыми измерительными приборами. Представим себе теперь другого наблюдателя (Бориса), пролетающего на ракете мимо первого. С точки зрения Бориса заряженный металлический шар движется относительно ракеты. Электрический ток, текущий по проводам в нашей квартире, – это движение электрических зарядов. Поэтому Борис будет наблюдать электрический ток. Но вспомним эксперимент Эрстеда: электрический ток вызывает появление магнитного поля. Поэтому приборы на ракете Бориса отметят присутствие как электрического, так и магнитного поля. Андрей будет наблюдать только электрическое поле, а Борис – и электрическое, и магнитное. К тому же напряженность электрического поля в измерениях Бориса и Андрея будет разной. Итак, результаты экспериментов Андрея и Бориса как будто противоречат друг другу.

К счастью, Андрей и Борис знакомы с классической статьей Эйнштейна. Им известно, что напряженности электрического и магнитного полей в трехмерном пространстве можно объединить в одну математическую величину, называемую тензором напряженности электромагнитного поля. Эта новая величина определена в четырехмерном пространстве-времени (измерения вверх и вниз, налево и направо, вперед и назад, в будущее и в прошлое). Знают они и о том, что электрические заряды и токи объединяются при этом в одну четырехмерную величину, называемую 4-током (четыре - током). В результате четыре уравнения Максвелла сводятся всего лишь к двум ковариантным уравнениям. Они содержат всю информацию, заключающуюся в уравнениях Максвелла, и к тому же теперь все наблюдатели единодушны в том, что эти уравнения правильно описывают действительность. Больше не остается никаких источников для разногласий между разными наблюдателями, как бы они не двигались.

106

А могут ли два наблюдателя, находящиеся в относительном движении, хоть в чем-нибудь прийти к согласию?

Точно так же как и в опыте Бориса и Андрея, результаты измерений длины и времени можно объединить, получив интервал про- странства-времени между двумя событиями. Три слагаемых, входящие в этот интервал, определяются по измерениям расстояний (вверх-вниз, влево - вправо, вперед-назад) между точками, в которых произошли эти два события. Четвертое слагаемое – это промежуток времени между моментами, когда произошли события. Движущиеся относительно друг друга наблюдатели будут получать разные результаты, измеряя эти расстояния и промежутки времени, но придут к одному и тому же значению для полного интервала в четырехмерном пространстве - времени. Поэтому говорят, что интервал инвариантен, т.е. он одинаков для всех, что схематически представлено на рис. 8.2.

Для одного наблюдателя два события могут быть очень близки по времени (т.е. происходить почти одновременно), но разделены огромным расстоянием в пространстве. Для другого наблюдателя те же самые события могут происходить с большим разрывом во времени (скажем, одно через много часов после другого), но очень близко друг к другу в пространстве. И, тем не менее, для обоих наблюдателей полный интервал пространства - времени между этими двумя событиями будет одинаков. Сокращение длин линеек и замедление хода часов двух наблюдателей, предсказываемые преобразованием Лоренца, как раз таковы, что интервал сохраняет инвариантность.

107

Рис. 8.2: Мысленный эксперимент, демонстрирующий инвариантность полного интервала пространства-времени.

Рис. 8.3: Изменение траектории падения капель дождя в зависимости от движения человека.

Хотя движение быстрее света невозможно и скорость света – абсолютная постоянная, при движении относительно источников света наблюдаются необычные явления. Чтобы разобраться в некоторых из них, представьте себе, что вы стоите под дождем, держа над головой раскрытый зонт. Представьте далее, что ветра нет, так что дождевые капли падают вертикально вниз. Если вы пойдете по улице, то вам, очевидно, придется наклонить зонт под некоторым углом в направле-

108

нии движения, чтобы не намокнуть, причем угол наклона нужно будет увеличить, если вы ускорите шаг (рис. 8.3).

Аналогичное явление происходит и со светом звезд. Земля движется по орбите вокруг Солнца со скоростью 30 км/с. Хотя эта скорость составляет очень малую долю скорости света, астрономам приходится из-за движения Земли немного наклонять свои телескопы вперед в направлении этого движения, чтобы в трубу телескопа попал свет именно той звезды, которую они хотят наблюдать. Подобно тому, как приходится наклонять зонт в направлении движения, приходится наклонять и телескоп на малый угол в направлении движения Земли (рис. 8.4). Этот эффект, называющийся аберрацией света звезд, был открыт Джеймсом Брадлеем около 1725 г., когда он обратил внимание на разность между наблюдаемыми и истинными положениями звезд. Угол аберрации чрезвычайно мал и не превышает 20,5''. Для сравнения укажем, что видимый с Земли поперечник Юпитера составляет около 40''.

Рис. 8.4: Аберрация света звезд.

Аберрация света звезд так мала просто потому, что Земля движется очень медленно, со скоростью, составляющей всего одну деся-

109

титысячную скорости света. Если бы вы оказались на борту космического корабля, способного развить субсветовую скорость, то эффект аберрации стал бы очень заметным.

Для того чтобы построить звездные карты, необходимы сложные вычисления, но в их основе лежит повседневный опыт. Представьте себе, что вы едете по шоссе со скоростью 90 км/ч во время дождя. Если даже ветра нет и капли падают строго вертикально, ветровое стекло машины будет мокрым, а заднее стекло останется практически сухим. При этом пассажирам движущегося автомобиля кажется, что капли дождя налетают спереди. Точно также при полете с субсветовой скоростью будет создаваться впечатление, что потоки звездного света падают на носовой иллюминатор космического корабля, как будто звезды со всего неба собрались перед кораблем. И если когда-нибудь космонавты покинут Солнечную систему со скоростью, очень близкой к скорости света, они, тем не менее, будут видеть Солнце в носовой иллюминатор космического корабля. А если они отправятся в межгалактический полет, то будут видеть перед собой нашу Галактику. Правда, при этом изображения Солнца и Галактики будут очень сильно искажены.

Но движение наблюдателя сказывается не только на положении звезд на небе, оно влияет также и на их цвет. Чтобы понять, почему это происходит, снова обратимся к повседневному опыту. Представьте себе, что вы стоите у края шоссе, а мимо проносится машина скорой помощи с включенной сиреной. Пока она приближается к вам, тон сирены кажется высоким, так как звуковые волны, испускаемые ею, «сгущаются» перед машиной. Но когда автомобиль начинает удаляться от вас, тон сирены значительно понижается. Позади автомобиля звуковые волны идут реже. Это явление называется эффектом Доплера.

Эффект Доплера свойствен и свету. Световые волны приближающегося к вам источника света как бы нагоняют друг друга, поэтому кажется, что частота этого света выше (а длина волны короче), чем обычно. Из всех цветов радуги фиолетовый цвет обладает самой

110