
- •Минобрнауки россии
- •1. Общая характеристика процесса проектирования ис
- •1.1. Понятие жизненного цикла информационной системы
- •1.2. Модели жизненного цикла программного обеспечения
- •1.3. Стандарт iso 12207: 1995. Процессы жизненного цикла программных средств
- •2. Структурные методы проектирования ис
- •2.1. Идеи, лежащие в основе структурных методов
- •2.2. Принципы структурного анализа
- •3. Исходные данные для проектирования
- •3.1. Консалтинг в области информационных технологий
- •3.2. Цели и основные этапы консалтинга
- •3.3. Проведение обследования
- •3.4. Построение и анализ моделей деятельности предприятия
- •3.5. Разработка системного проекта
- •3.6. Предложения по автоматизации
- •3.7. Техническое проектирование
- •4. Разработка функциональной модели
- •4.1. Функциональные модели (sadt)
- •4.2. Иерархия функциональных диаграмм
- •5. Разработка модели потоков данных
- •5.1. Диаграммы потоков данных (dfd)
- •5.2. Этапы построения модели
- •5.3. Модели реального времени (управляемые событиями)
- •6. Разработка модели данных
- •6.1. Моделирование данных
- •6.2. Физическая и логическая модель данных
- •6.3. Создание логической модели данных
- •6.3.1. Уровни логической модели
- •6.3.2. Сущности и атрибуты
- •6.3.3. Связи
- •6.3.4. Типы сущностей и иерархия наследования
- •6.3.5. Ключи
- •6.3.6. Нормализация данных
- •6.4. Уровни физической модели
- •7. Методология структурного анализа и проектирования
- •7.1. Методология структурного анализа и проектирования
- •7.2. Сравнительный анализ функциональных моделей и моделей потоков данных
- •8. Инструментальные средства представления проектных решений
- •8.1. Концептуальные основы case-технологий
- •8.2. Классификация case-средств
- •8.3. Функциональные характеристики case-средств
- •8.4. Дополнительные средства поддержки жизненного цикла по
- •Литература
3.7. Техническое проектирование
На данном этапе на основе системного проекта и принятых решений по автоматизации осуществляется проектирование системы. Фактически здесь дается ответ на вопрос: «Как (каким образом) мы будем строить систему, чтобы она удовлетворяла предъявленным к ней требованиям?». Этот этап разделяется на два подэтапа:
проектирование архитектуры системы, включающее разработку структуры и интерфейсов ее компонент (автоматизированных рабочих мест), согласование функций и технических требований к компонентам, определение информационных потоков между основными компонентами, связей между ними и внешними объектами;
детальное проектирование, включающее разработку спецификаций каждой компоненты, разработку требований к тестам и плана интеграции компонент, а также построение моделей иерархии программных модулей и межмодульных взаимодействий и проектирование внутренней структуры модулей.
При этом происходит расширение системного проекта:
за счет его уточнения;
за счет построения моделей автоматизированных рабочих мест, включающих подсхемы информационной модели и функциональные модели, ориентированные на эти подсхемы вплоть до идентификации конкретных сущностей информационной модели;
за счет построения моделей межмодульных и внутримодульных взаимодействий.
4. Разработка функциональной модели
4.1. Функциональные модели (sadt)
Методология структурного анализа и проектирования (SADT–StructuredAnalysisandDesignTechnique) представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. МетодологияSADTразработана Дугласом Россом в 70-х гг. ХХ века. На ее основе разработана, в частности, известная методологияIDEF0(IcamDEFinition-0), которая является основной частью программы ICAM (интегрированная компьютеризация производства), проводимой по инициативе ВВС США.
Функциональная модель– это модель, описывающая функциональную структуру объекта на основании иерархии взаимосвязанных диаграмм с требуемой степенью детализации. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями. В основе этой методологии лежат следующие концепции:
• графическое представление блочного моделирования. Графика блоков и дуг SADT-диаграммы отображает функцию в виде блока, а интерфейсы входа/выхода представляются дугами, соответственно входящими в блок и выходящими из него. Взаимодействие блоков друг с другом описывается посредством интерфейсных дуг, выражающих ограничения, которые, в свою очередь, определяют, каким образом функции выполняются и управляются;
• строгость и точность. Выполнение правил SADTтребует достаточной строгости и точности, не накладывая в то же время чрезмерных ограничений на действия аналитика. Правила SADT включают: ограничение количества блоков на каждом уровне декомпозиции (правило 3-6 блоков), связность диаграмм (номера блоков), уникальность меток и наименований (отсутствие повторяющихся имен), синтаксические правила для графики (блоков и дуг), разделение входов и управлений (правило определения роли данных);
• отделение организации от функции, т.е. исключение влияния организационной структуры на функциональную модель.
Методология SADT может использоваться для моделирования широкого круга систем и определения требований и функций с последующей разработкой системы, которая удовлетворяет этим требованиям и реализует эти функции. В уже существующих системах SADT может быть использована для анализа функций, выполняемых системой, и указания механизмов, посредством которых они осуществляются.
Результатом применения методологии SADT является модель, которая состоит из диаграмм, фрагментов текстов и глоссария, имеющих ссылки друг на друга. Диаграммы - главные компоненты модели, все функции ИС и интерфейсы на них представлены как блоки и дуги. Место соединения дуги с блоком определяет тип интерфейса. Управляющая информация входит в блок сверху, в то время как информация, которая подвергается обработке, показана с левой стороны блока, а результаты выхода показаны с правой стороны. Механизм (человек или автоматизированная система), который осуществляет операцию, представляется дугой, входящей в блок снизу (рис. 4.1).
Одной из наиболее важных особенностей методологии SADT является постепенное введение все больших уровней детализации по мере создания диаграмм, отображающих модель.
На рис. 4.2, где приведены четыре диаграммы и их взаимосвязи, показана структура SADT-модели. Каждый компонент модели может быть декомпозирован на другой диаграмме. Каждая диаграмма иллюстрирует «внутреннее строение» блока на родительской диаграмме.