
- •Содержание
- •1 Техника безопасности в лаборатории
- •1.2 Пероксидные соединения
- •1.3 Стеклянные сосуды (установки), работающие под давлением и при разрежении
- •1.4 Едкие и ядовитые вещества
- •1.5 Опасность электрического тока
- •2 Получение синтетических каучуков путем свободнорадикальной полимеризации
- •2.1 Инициирование полимеризации
- •2.2 Реакции роста полимерной цепи
- •2.3 Обрыв и перенос цепи
- •2.4 Компоненты эмульсионной полимеризации
- •2.5 Скорость полимеризации
- •Лабораторная работа 1 Синтез изопрен-стирольного каучука методом эмульсионной полимеризации
- •Подготовка мономеров
- •Подготовка компонентов водной фазы
- •Рецептура водной фазы эмульсионной полимеризации
- •Расчет необходимых количеств реагентов
- •Состав системы сополимеризации и необходимые количества реагентов
- •Методика проведения полимеризации
- •Расчет объемов компонентов водной фазы
- •Рецептура загрузки компонентов в ампулы
- •Определение молекулярной массы полимера
- •Техника безопасности
- •Оказание первой помощи
- •3 Получение синтетических каучуков путем ионной полимеризации
- •3.1 Катионная полимеризация
- •Лабораторная работа 2 Катионная полимеризация октаметилциклотетрасилоксана
- •Выполнение работы
- •Определение средневязкостной молекулярной массы получаемых полимеров
- •Значения коэффициентов к и для силоксановых каучуков
- •Результаты эксперимента по определению вязкости растворов
- •Результаты для определения характеристической вязкости
- •Техника безопасности
- •3.2 Анионная полимеризация
- •Лабораторная работа 3 Анионная полимеризация октаметилциклотетрасилоксана
- •3.3 Ионно-координационная полимеризация
- •Лабораторная работа 4 Получение синтетического изопренового каучука в присутствии комплексного катализатора Циглера-Натта
- •Определение содержания 1,4-транс и 1,2-звеньев в диеновых каучуках
- •Определение содержания полимера в растворе
- •Значения коэффициентов к и
- •Техника безопасности
- •4Получение синтетических каучуков путем поликонденсации
- •Лабораторная работа 5 Линейная поликонденсация этиленгликоля и дикарбновой кислоты, катализируемая
- •Выполнение работы
- •Исходные реагенты для синтеза
- •Определение карбоксильных групп в полиэфирах
- •Методика проведения анализа
- •Обработка результатов
- •Результаты расчетов
- •Результаты измерений
- •Лабораторная работа 6 Получение полиуретанового каучука методом литья
- •Расчет количества тди
- •Теоретический расчет процентного содержания изоцианатных групп
- •Определение процентного содержания изоцианатных групп
- •Методика проведения анализа
- •5Получение синтетических каучуков путем полимераналогичных превращений
- •Лабораторная работа 7 Получение галоидированных бутилкаучуков
- •Методика проведения работы
- •Методика проведения анализа
- •6Получение жидких каучуков
- •6.1 Получение жидких каучуков методом радикальной полимеризации
- •6.2 Получение жидких каучуков методом ионной полимеризации
- •6.3 Получение жидких каучуков методом деструкции высокомолекулярных каучуков
- •6.4 Синтез жидких каучуков путем поликонденсации
- •6.5 Химическая модификация жидких каучуков
- •6.6 Молекулярные параметры жидких каучуков с коцевыми функциональными группами
- •6.7 Реологические свойства жидких каучуков
- •6.8 Особенности технологии жидких каучуков
- •Лабораторная работа 8 Получение жидкого изобутиленового каучука
- •Порядок проведения работы:
- •Установка для получения озона и общая методика озонирования
- •Сренечисловую молекулярную массу находят по уравнению
- •Лабораторная работа 9 Синтез олигоизопрендиола – жидкого каучука с концевыми гидроксильными группами
- •Объемы исходных реагентов
- •Определение содержания гидроксильных групп в олигоизопрендиоле методом ацетилирования (фталирования)
- •Лабораторная работа 10 Получение жидкого тиокола и герметиков на его основе
- •1. Поликонденсация
- •2. Расщепление высокомолекулярного полимера и получение жидкого тиокола
- •3. Коагуляция жидкого тиокола и получение концевых меркаптановых групп
- •4. Отмывка и сушка полимера
- •Синтез тетрасульфида натрия
- •Методика проведения процесса
- •1. Мономеры
- •Расчет «условного моля»
- •2. Дисульфид натрия и диспергатор
- •3. Расщепляющие агенты
- •Состав смеси для вулканизации
- •Вопросы к коллоквиумам
- •Список использованной литературы
- •420015, Казань, к.Маркса, 68
Расчет количества тди
На 1 моль олигоэфирдиола берется 2 моля ТДИ. С учетом этого соотношения находим расчетную массу ТДИ:
1800 г - 2·174 г
50 г - х г,
откуда х=9,67 г ТДИ,
где 50 г – масса олигоэфирдиола.
В случае изменения ММ олигоэфирдиола значение 1800 заменяется на уточненное значение ММ. С учетом удельной плотности ТДИ, равной 1,22 г/мл вычисляется необходимый объём ТДИ.
VТДИ=9,67 г/1,22 г/мл=7,92мл
Теоретический расчет процентного содержания изоцианатных групп
Молекулярная масса двух изоцианатных групп составляет 84, а ММ ТДИ составляет 174, отсюда навеска ТДИ содержит следующее количество изоцианатных групп:
174 г - 84 г
9,67 г - х г
х=4,67 г NCO-групп.
Масса смеси олигоэфирдиола и 2,4-ТДИ составляет 50+9,67=59,67 г. Концентрация изоцианатных групп в смеси вычисляется следующим образом:
59,67 г - 4,67 г
100 г – х г
х=7,80г (в 100 г) или 7,80 % NCO групп.
Таково теоретическое содержание NCO-групп в не прореагировавшей реакционной смеси в начальный момент времени.
При достижении 50 % конверсии NCO групп реакционная смесь должна содержать
7,80 % - 100 %
х %- 50 %
х=3,90 % прореагировавших изоцианатных групп или
7,80 % - 3,90 %=3,90 % свободных NCO- групп.
Определение процентного содержания изоцианатных групп
Метод основан на взаимодействии изоцианатных групп со вторичным амином согласно следующей реакции:
Избыток вторичного амина определяется титриметрически путем использования следующей реакции:
Методика проведения анализа
В чистую и сухую коническую колбу, взвешенную с точностью до 0,0001 г, вводят стеклянной палочкой 0,3-0,4 г анализируемого продукта и колбу с навеской взвешивают с точностью до 0,0001 г. Затем в колбу вводят пипеткой 10,0 мл 0,2 N раствора диэтиламина в ацетоне, момент введения которого фиксируют. Содержимое колбы встряхивают до полного растворения пробы и титруют 0,1 N раствором соляной кислоты в присутствии индикатора бромфенолового синего до перехода синей окраски в зеленовато-желтую. Параллельно проводят холостой опыт.
Содержание NCO-групп (Х) в % мас. вычисляют по формуле:
,
где a-количество 0,1 N раствора соляной кислоты, пошедшее на титрование в холостом опыте, мл; b-количество 0,1 N раствора соляной кислоты, пошедшее на титрование пробы, мл; F - поправочный коэффициент 0,1 N раствора соляной кислоты; 0,0042 - количество NCO-групп, соответствующее 1 мл 0,1 N раствора соляной кислоты, г; g - масса анализируемого вещества в пробе из раствора, г.
5Получение синтетических каучуков путем полимераналогичных превращений
Полимераналогичными превращениями называются такие химические реакции полимеров, при которых степень полимеризации (и соответственно молекулярная масса) полимеров не изменяется (или изменяется очень незначительно). Каждое элементарное звено макромолекулы выступает в этих реакциях в качестве самостоятельной реакционноспособной группы. Таким образом, в результате полимераналогичных превращений меняется химическая природа элементарного звена, но при этом степень полимеризации не изменяется.
Наиболее химически активными каучуками являются высокомолекулярные ненасыщенные полимеры диенов (изопрена, бутадиена, хлоропрена) и их сополимеры с виниловыми мономерами (стиролом, нитрилом акриловой кислоты, изобутиленом и т.д.), что обусловлено высокой реакционной способностью С=С-связи (изопреновые, бутадиеновые, бутадиенстирольные, бутадиеннитрильные и другие диеновые каучуки). Высокомолекулярные насыщенные каучуки (уретановые, полисульфидные, силоксановые) вступают в химические реакции в основном по концевым функциональным группам, содержание которых ничтожно мало и их обычно не используют для полимераналогичных превращений (химические реакции функциональных жидких каучуков указанных типов рассмотрены в соответствующем разделе).
К полимераналогичным превращениям ненасыщенных каучуков относят реакции присоединения, замещения, цис- транс-изомеризации. При этом степень полимеризации не изменяется или изменяется незначительно (надо помнить, что химические реакции полимеров в целом, и каучуков в частности никогда не протекают по одному направлению).
Ненасыщенные каучуки легко вступают во взаимодействие по двойным С=С-связям с серо- и азотсодержащими соединениями, галогеноводородами, малеиновым ангидридом, галогенами, эфирами азодикарбоновой кислоты, нитрилами, надкислотами, водородом, нитрозосоединениями и др. При этом свойства каучуков изменяются в широких пределах.
В промышленном масштабе с использованием полимераналогичных превращений выпускают два типа каучуков: хлорсульфополиэтилен и галобутилкаучуки.
Хлорсульфополиэтилен получают обработкой раствора полиэтилена (молекулярная масса 18000 – 30000) хлором и диоксидом серы. Сульфохлорирование протекает по радикальному механизму (для образования свободных радикалов чаще всего используют пероксиды). В процессе сульфохлорирования протекают следующие реакции:
Конечный продукт содержит 26-29 % хлора и 1,3-1,7 % серы, что отвечает следующему строению хлорсульфополиэтилена:
Одним из наиболее значимых процессов получения синтетических каучуков с использованием полимераналогичных превращений является галогенирование.
Галогенирование ненасыщенных каучуков может протекать как по радикальному, так и по ионному механизмам:
и
т.д.
Основные реакции обычно сопровождаются побочными реакциями, такими как циклизация, сшивание макромолекул, присоединение хлороводорода по двойным связям.
Хлорированный 1,4-цис-полиизопрен, содержащий 66-68 % хлора, используется для получения лаков, типографских красок, связующих и т.д.
Галогенированием сополимера изобутилена с изопреном (бутилкаучук) в промышленном масштабе получают хлор- и бромбутикаучуки (ХБК и ББК).
Хлорированию подвергаются только изопреновые звенья сополимера. Происходит реакция замещения водорода, при этом сохраняется до 75 % ненасыщенности и образуются следующие химические структуры:
Содержание хлора в каучуке достигает 1,1-1,3 % мас.
В отличие от хлора, бром более склонен к реакциям присоединения, но в контролируемых условиях удается сохранить 90 % исходной ненасыщенности:
Содержание брома в каучуке 2-3 % мас.