
- •Основные этапы биотехнологического производства.
- •Кривая роста микроорганизмов в простых периодических условиях.
- •Вторичные метаболиты. Кинетика образования.
- •Основные этапы становления биотехнологии.
- •Периодическая культура.
- •Использование биотехнологии в интересах промышленности, медицины и в других областях.
- •Основные параметры роста микробной культуры.
- •Классификация микроорганизмов по типу получение энергии и источникам углерода.
- •Стадии биотехнологического процесса.
- •Фазы роста периодической культуры микроорганизмов.
- •Производство ферментов поверхностным способом.
- •Кривые накопления первичных и вторичных метаболитов.
- •Механизмы регуляции микробного метаболизма: ингибирование конечным продуктом.
- •Рост микроорганизмов на различных средах. Метаболизм метана и метанола.
- •Производство ферментов глубинным способом.
- •Регуляция скорости синтеза ферментов путем репрессии и индукции.
- •Непрерывные методы культивирования.
- •Рост микроорганизмов на различных средах. Метаболизм метанола и ацетата.
- •Контроль транспорта питательных веществ в клетку. Проницаемость мембран.
- •Потребности микроорганизмов в кислороде.
- •Методы культивирования микроорганизмов.
- •Первичные и вторичные метаболиты. Особенности образования.
- •Ассимиляция жиров микроорганизмами.
- •Влияние состава питательных сред и условий культивирования на рост и образование продуктов.
- •Кинетика гибели микроорганизмов. Удельная скорость гибели.
- •Катаболитная репрессия – как механизм регуляции синтеза ферментов.
- •Мутационные дефекты метаболитической регуляции.
- •Элементы методологии генной инженерии.
-
Основные параметры роста микробной культуры.
Рост – это согласованное увеличение количества всех химических компонентов, формирующих клеточные структуры. Рост клеток обычно сопровождается увеличением их массы и размеров. Однако эта закономерность наблюдается не всегда, так как в некоторых условиях клетки способны просто накапливать запасные или резервные вещества, т. е. масса может увеличиваться, но рост при этом не наблюдается. В условиях сбалансированного роста легко определить величину скорости роста бактериальной популяции в каждый момент времени, если измерить прирост любого компонента клетки по отношению к его исходному количеству. Таким образом, в культуре, растущей сбалансированно, скорость прироста вещества клеток в любой данный момент пропорциональна числу или массе имеющихся в это время бактерий. Коэффициент пропорциональности называют удельной скоростью роста (µ).
Удельную скорость роста можно рассчитать по следующим формулам:
и
;
где N – число клеток в единице объема; Х – масса клеток в единице объема; t – время.
Зная удельную скорость роста, можно
определить время генерации (g
– время, необходимое для удвоения
числа клеток популяции в часах или
минутах):
.
Масса клеток, образованная на единицу использованного компонента среды, представляет собой величину, которую называют экономическим коэффициентом (или выходом биомассы) – Y. Эту величину определяют по уравнению:
где Х – масса сухого вещества клеток (г/мл культуры), вступившей в стационарную фазу роста; Х0 – масса сухого вещества клеток в 1 мл среды сразу после инокуляции среды; (Х – Х0) – урожай бактериальной культуры (урожай зависит от количества и природы используемых питательных веществ, а также от условий культивирования); (S0 – S) – количество потребленного субстрата (компонента среды).
-
Классификация микроорганизмов по типу получение энергии и источникам углерода.
Различают углеродное и азотное питание.
I. По типу углеродного питания микроорганизмы принято делить на аутотрофы и гетеротрофы. Аутотрофы (прототрофы) – микроорганизмы, способные воспринимать углерод из углекислоты воздуха. К ним относятся нитрифицирующие бактерии, железобактерии, серобактерии. Аутотрофы способны использовать воспринятую углекислоту для синтеза сложных органических соединений. Таким образом, аутотрофы обладают способностью синтезировать сложные органические соединения из неорганических. Поскольку такие микробы не нуждаются в готовых органических соединениях, среди них нет болезнетворных. Однако среди аутотрофов встречаются микроорганизмы, обладающие способностью усваивать углерод из углекислоты воздуха и из органических соединений. Такие микроорганизмы, имеющие смешанный тип питания определены как миксотрофы.Гетеротрофы в противоположность аутотрофам используют углерод из любых готовых органических соединений (чаще всего это углерод спиртов, сахаров, органических кислот, многоатомных спиртов). К гетеротрофам принадлежат возбудители различного рода брожений, гнилостные микробы и микроорганизмы – возбудители различных заболеваний. Однако деление микроорганизмов на аутотрофы и гетеротрофы достаточно условно, так как при изменении условий среды обмен веществ у микроорганизмов может меняться.Гетеротрофы включают в себя две подгруппы: метатрофы (сапрофиты) – живут за счет использования мертвых субстратов (гнилостные микроорганизмы) и паратрофы - паразитические микроорганизмы, живущие на поверхности или внутри организма хозяина и питающиеся за его счет.
II. По способу усвоения азотистых веществ микроорганизмы подразделяют на четыре группы:
·Протеолитические, способные расщеплять нативные белки, пептиды, аминокислоты.
·Дезаминирующие, способные отщеплять аминогруппы только у свободных аминокислот.
·Нитритно-нитратные, усваивающие окисленные формы азота.
·Азотфиксирующие, обладающие свойством усваивать атмосферный азот.
Некоторые микроорганизмы в качестве ростовых факторов используют аминокислоты, синтезируемые самой микробной клеткой или находящиеся в среде. Некоторые микроорганизмы обладают способностью синтезировать ростовые факторы в относительно больших количествах, обеспечивая не только свои потребности, но и интенсивно выделяя синтезируемые вещества в окружающую среду. Например, пропионовокислые бактерии способны синтезировать витамин В12, что активно используется в промышленности. Кроме описанных способов получения микроорганизмами питательных веществ часто применяется классификация микроорганизмов в зависимости от источника энергии:
· Фототрофные микроорганизмы – это микроорганизмы, способные использовать в качестве источника энергии свет. Например, синезеленые водоросли, пурпурные серобактерии. Эти микроорганизмы содержат пигменты, по своему составу близкие к хлорофиллу растений.
· Хемотрофные микроорганизмы получают энергию в результате окислительно-восстановительных реакций с участием питательных субстратов.