- •Часть 1. Основы расчета
- •Глава 1
- •§ 1 Общие сведения о деталях и узлах машин и основные требования к ним
- •§ 2. Прочностная надежность деталей машин (методы оценки)
- •§ 3. Износостойкость деталей машин
- •§ 4. Жесткость деталей машин
- •§ 5. Стадии конструирования машин
- •Глава 2
- •§ 1. Машиностроительные материалы
- •§ 2. Точность изготовления деталей
- •Часть 2. Передаточные механизмы
- •Глава 3
- •§ 1. Ремни и шкивы
- •§ 2. Усилия и напряжения в ремне
- •§ 3. Кинематика и геометрия передач
- •§ 4. Тяговая способность и кпд передач
- •§ 5. Расчет и проектирование передач
- •§ 6. Передачи зубчатыми ремнями
- •Глава 4
- •§ 1. Виды механизмов и их назначение
- •§ 2. Кинематика и кпд передач
- •§ 3. Расчет передач
- •§ 1. Общие сведения
- •§ 2. Кинематика зубчатых передач
- •§ 3. Элементы теории зацепления передач
- •11 Г. Б. Иосилевич и др.
- •§ 5. Геометрический расчет эвольвентных прямозубых передач
- •§ 6. Особенности геометрии косозубых и шевронных колес
- •§ 7. Особенности геометрии конических колес
- •§ 8. Передачи с зацеплением новикова
- •§ 9. Усилия в зацеплении
- •§ 10. Расчетные нагрузки
- •§ 11. Виды повреждений передач
- •§ 12. Расчет зубьев на прочность при изгибе
- •§ 13. Расчет на контактную прочность активных поверхностей зубьев
- •§ 14. Материалы, термообработка и допускаемые напряжения для зубчатых колес
- •§ 15. Особенности расчета и проектирования планетарных передач
- •§ 16. Конструкции зубчатых колес
- •Глава 21 гиперболоидные передачи
- •§ 1. Общие сведения
- •§ 2. Геометрический расчет передачи
- •§ 3. Кинематика и кпд передачи.
- •§ 4. Расчет на прочность червячных передач
- •§ 5. Материалы, допускаемые напряжения и конструкции деталей передачи
- •Глава 22
- •§ 1. Общие сведения
- •§ 2. Кинематические характеристики и кпд передачи
- •§ 3. Расчет несущей способности элементов передачи
- •Глава 23
- •§ 1. Цепи и звездочки
- •§ 2. Кинематика и быстроходность передач
- •§ 3. Усилия в передаче
- •§ 4. Расчет цепных передач
- •§ 5. Особенности конструирования и эксплуатации передач
- •Часть 3. Валы, муфты, опоры и корпуса
- •Глава 24
- •§ 1. Общие сведения
- •§ 2. Конструкции и материалы валов и осей
- •§ 3. Расчет прямых валов на прочность и жесткость
- •§ 4. Подбор гибких валов
- •§ 1. Общие сведения
- •§ 2. Нерасцепляемые муфты
- •§ 3. Сцепные управляемые
- •Глава 26
- •§ 1. Общие сведения
- •§ 2. Особенности работы подшипников
- •§ 3. Конструкции и виды повреждений подшипников
- •§ 4. Нагрузочная способность подшипников скольжения
- •Глава 27 подшипники качения
- •§ 1. Общие сведения
- •§ 2. Кинематика и динамика подшипников
- •1'Нс. 27.4. План скоростей в Рис. 27.5. Контактные напряжения и план скоростей в радиально-упорном подшипнике
- •§ 3. Несущая способность подшипников
- •§ 4. Выбор подшипников
- •§ 5. Конструкции подшипниковых узлов
- •Детали корпусов, уплотнения, смазочные материалы и устройства
- •§ 1. Детали корпусов
- •§ 2. Уплотнения и устройства для уплотнения
- •I'm. 28.2. Конструктивные формы прокладок:
- •§ 3. Смазочные материалы и устройства
- •Часть 4. Соединения деталей (узлов) машин и упругие элементы
- •§ I. Сварные соединения
- •§ 2. Проектирование и расчет соединений при постоянных нагрузках
- •§ 3. Расчет на прочность сварных соединений при переменных нагрузках
- •§ 4. Паяные соединения
- •§ 5. Клеевые соединения
- •Глава 30 заклепочные соединения
- •§ 1. Общие сведения
- •§ 2. Расчет соединений при симметричном нагружении
- •§ 3. Расчет соединений
- •Глава 31
- •§ 1. Общие сведения
- •§ 2. Расчет соединений
- •Глава 32
- •§ 1. Общие сведения
- •§ 2. Особенности работы резьбовых соединений
- •§ 3. Виды разрушений и основные расчетные случаи
- •§ 4. Особенности расчета групповых (многоболтовых) соединений
- •Глава 33
- •§ 1. Шпоночные соединения
- •§ 2, Шлицевые соединения
- •§ 3. Профильные соединения
- •§ 4. Штифтовые соединения
- •Глава 34
- •§ 2. Расчет витых цилиндрических пружин сжатия и растяжения
- •§ 3. Резиновые упругие элементы
- •Глава 35
- •§ 1. Общие сведения
- •§ 2. Общие принципы построения систем автоматизированного проектирования
- •§ 3. Структура математической модели
- •§ 4. Цели и методы оптимизации
- •Глава 36
- •§ 1. Расчет вала минимальной массы
- •§ 2. Расчет многоступенчатого редуктора минимальных размеров
§ 2. Усилия и напряжения в ремне
При движении ремень передает усилие с ведущего шкива на ведомый за счет сил сцепления (трения) на поверхностях контакта, определяемых углом αi (i — номер шкива, i = 1,2) обхвата ремнем шкива (рис. 18.5). Для создания между ремнем и шкивами сил трения ремень прижимают к шкивам усилием предварительного натяжения Fo.
Под действием вращающего момента Т1 в ведущей ветви (набегающей на ведущий шкив) передачи натяжение возрастет до некоторой величины F1 вследствие появления момента сопротивления Т2, а усилие в ведомой ветви (сбегающей с ведущего шкива) уменьшится до величины F2.
При этом полезная нагрузка ремня (окружное усилие), равная силе трения между ремнем и шкивом, будет передаваться по всей дуге обхвата
![]()
где
qтр
—
удельная сила трения; Ак
— площадь поверхности контакта
ремня со шкивом.
Если использовать модель ремня в виде гибкой нерастяжимой нити, то усилия в ветвях передачи при действии рабочей нагрузки F, можно связать соотношением Л. Эйлера (см. с. 84), которое при учете центробежных сил примет вид
![]()
где f— коэффициент трения между ремнем и шкивом; αск — угол дуги скольжения ремня по шкиву.
С
учетом равенства (18.1) несложно
найти
![]()
откуда напряжения в сечениях ведущей и ведомой ветвей ремня от начального натяжения
Рис. 18.5. Схема
взаимодействия ремня со шкивом
(18.3)

Рис. 18.6. Распределение напряжений в ремне передачи
и при действии внешней нагрузки
![]()
(18,4)
где А — площадь поперечного сечения ремня.
Изменение напряжений вдоль ремня показано на рис. 18.6. Наибольшие напряжения испытывают наружные волокна в зоне контакта ремня с малым шкивом. Здесь к растягивающим напряжениям σ1 от усилия натяжения F1 добавляется напряжение растяжения от изгиба ремня (как стержня) вокруг шкива
![]()
(18.5)
Окружные растягивающие напряжения от центробежных сил находят, полагая, что ремень является кольцом, вращающимся со скоростью v (р — плотность материала ремня):
(
18.6)
Максимальные напряжения изгиба в ремне, как и в кольце, зависят от наименьшего диаметра D1 шкива и толщины ремня h:
(18,7)
где Е - приведенный модуль упругости ремня, для прорезиненных ремней Е = 200 .. 300 МПа, для капроновых ремней Е = 600 МПа, для клиновых кордотканевых ремней Е = 500 ..600 МПа.
Напряжения σ0 в ремне от начального натяжения назначают из условия обеспечения наибольшей долговечности ремня. На основании опыта эксплуатации передач с плоским и клиновым ремнем назначают σ0= 1,2 ..1,8 МПа.
Существенно, что напряжения изгиба а σи являются переменными, они вызывают усталостное повреждение ремня. Для уменьшения напряжений минимальное значение диаметра малого шкива ограничивают [см. формулу (18.7)]. Обычно D1/h=25..45
§ 3. Кинематика и геометрия передач
Скольжение в передаче. Работа упругого ремня сопровождается его неизбежным проскальзыванием, вызванным различным натяжением ведущей и ведомой ветвей и, как следствие, неравномерным распределением деформаций растяжения и сдвига по дуге обхвата. При обегании ремнем ведущего шкива натяжение его падает, ремень укорачивается и проскальзывает по шкиву. На ведомом шкиве ремень удлиняется, опережая шкив. Опытом установлено, что на первом участке АВ - дуге сцепления (см. рис. 18.5) за счет нарастающих тангенциальных сил сцепления (меньших полных сил трения) передается малая часть нагрузки, а деформации сдвига ремня (показаны тонкими линиями) приводят к небольшому относительному снижению его скорости.
В точке В силы сцепления становятся равными силам трения, происходит срыв и начинается скольжение ремня по дуге ВС — дуге скольжения. На этой дуге с углом αск за счет нарастающих от точки В к точке С сил трения передается основная часть окружного усилия и имеет место значительное снижение окружной скорости.
Снижение скорости от v1 (для ведущей ветви) до v2 (для ведомой ветви) характеризуют относительным скольжением
![]()
Передаточное отношение
![]()
В расчетах принимают ξ = 0,01 - 0,02.
Быстроходность передачи. Если окружные напряжения в ремне, определяемые по формуле (18.6), σц=σ0 , то давление на всей дуге обхвата будет равно нулю, и передача не сможет передавать нагрузку. Окружная скорость на шкиве при этом
![]()
Для ремня из капрона можно принять напряжение от начального натяжения σ0= 50 МПа и v1Kp = 150 м/с.
С увеличением быстроходности возрастают потери на трение и при окружной скорости t)Kp = |/сто/5р потери на трение будут наибольшими. Режимов работы передачи со скоростью v2kp следует избегать из-за опасности перегрева ремня.
Оптимальная скорость ремней 20 — 25 м/с, а наибольшая допустимая 30 — 35 м/с. Узкие клиновые ремни с улучшенным кордом могут работать при скоростях до 40 — 60 м/с.
Геометрия передачи. Основными геометрическими параметрами передач являются диаметры шкивов Dt и D2, межосевое расстояние а, длина ремня L и угол обхвата α на меньшем шкиве. .
Для ограничения напряжений изгиба (см. с. 295) диаметр Dt меньшего шкива в клиноременной передаче регламентирован стандартом для каждого сечения ремня (ГОСТ 1284-80). Для передач с плоским ремнем минимальный диаметр (мм) меньшего шкива находят по эмпирической формуле
![]()
где P1 — передаваемая мощность, кВт; п1 — частота вращения меньшего шкива, об/мин.
Минимальное межосевое расстояние в плоскоременных передачах
amin = 0,5(Dl+D2),
в клиноременных передачах (на основе данных эксплуатации) amin = 0,55 (Dl+D2) + h.
Для увеличения долговечности ремня принимают а > amin.
Максимальное межосевое расстояние по экономическим соображениям (во избежание увеличения габаритов и стоимости ремней) рекомендуют ограничивать величиной
аmax = 2(D1+ D2).

Рис. 18.7. Схема передач с натяжным роликом
Требуемая длина ремня для открытой передачи при заданном (или желательном) межосевом расстоянии а и угле обхвата а определяется как сумма прямолинейных участков и дуг обхвата
![]()
Угол обхвата меньшего шкива
![]()
Рекомендации по выбору а даны ниже. Длину для передач с натяжным роликом (рис. 18.7) находят аналогично.
