Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОИ (new) И.doc
Скачиваний:
234
Добавлен:
12.03.2015
Размер:
11.37 Mб
Скачать

Основные законы теплового излучения

Закон Стефана – Больцмана определяет связь между энергетической светимостью R абсолютно черного тела (АЧТ) и его температурой:

R = T4,

где =5,6697·10-8 Вт/(м2·К4) – постоянная Стефана – Больцмана.

Закон Планка дает качественную характеристику лучистого потока, указывая, как распределяется энергия излучения АЧТ по длинам волн:

R(, T)=C1-5{exp[C2/(T)] –1}-1,

где С1=3,7415·10-16 Вт·м2; С2=1,4388·10-2 м·К.

Закон Голицина – Вина позволяет определить длину волны излучения АЧТ, соответствующую максимуму кривой R(, T); max=2898/T, мкм.

Реальный тепловой излучатель характеризуется коэффициентом излучения (коэффициентом черноты) =f(), который показывает, какую часть энергетическая светимость R данного тела составляет от энергетической светимости АЧТ при той же температуре.

Источники излучения

В измерительных преобразователях в качестве источников излучения используются лампы накаливания, газоразрядные лампы, светодиоды и лазеры. Основными характеристиками источников излучения являются характер свечения (непрерыв­ный или импульсный), спектральный состав излучения, мощность излучения (свето­вой поток, сила света, яркость), потребляемая мощность (напряжение и ток пита­ния), габариты.

Лампы накаливания имеют непрерывный спектр излучения, охватывающий видимую и инфракрасную области. Мощность излучения ламп накаливания относительно невелика, спектральный состав и интенсивность свечения зависят от темпе­ратуры нити, определяемой напряжением и током питания. Характер свечения непрерывный.

Газоразрядные лампы представляют собой кварцевый или стеклянный баллон, заполненный газом, с впаянными токоведущими электродами. Электрический разряд в газовом промежутке сопровождается интенсивным световым излучением. Газораз­рядные лампы подразделяют на лампы непрерывного свечения и импульсные, сила света во вспышках которых достигает 108 кд. Газоразрядные лампы имеют линейчатый спектр излучения. К недостаткам газоразрядных ламп относятся большие габариты и сложность схем включения.

Лазеры. В настоящее время применяются газовые (ГОСТ 23202–78), твердотельные и полупроводниковые (ГОСТ 17490–77) лазеры. В состав лазера обычно входят излучатель и блок питания, а также могут входить блок автоматики и вспо­могательные устройства.

Параметры излучения зависят от излучателя, а также от режима излучения лазера, который может быть непрерывным, импульсным и режимом одиночных импуль­сов. При импульсном (пульсирующем) режиме излучение лазера происходит в виде регулярной последовательности импульсов с частотой f, причем длительность импуль­сов гораздо меньше периода их повторения. В режиме одиночных импульсов длитель­ность импульса обычно не превышает 10-3c, а промежутки между ними достигают десятков минут.

Максимальная мощность излучения достигается в режиме одиночных импульсов и для твердотельных лазеров составляет десятки мегаватт. В измерительной технике наибольшее распространение получили газовые лазеры, излучение которых отличается высокой степенью монохроматичности и поляризованности.

Светодиоды представляют собой излучающий р-n-переход. В настоящее время наибольшее распространение получили арсенидно-галлиевые светодиоды полусфери­ческой конструкции (диаметр излучающей полусферы 1,4 мм), максимум интенсив­ности излучения которых соответствует длинам волн 0,92–0,96 мкм, ширина спек­тральной линии 20–70 нм. Процессы включения и выключения светодиодов опре­деляются постоянными времени 10-8–10-9 с, и светодиоды могут использоваться как в режиме постоянного свечения, так и в импульсном режиме. Характеристики светодиодов зависят от температуры; при повышении температуры уменьшается мощность излучения (примерно 0,01 К-1) и сдвигается в сторону больших длин волн максимум интенсивности излучения (около 0,3–2 нм/К).

Достоинствами полупроводниковых светодиодов являются высокий КПД, возможность модуляции излучения по произвольному закону путем управления возбуждающим током, малые габариты, способность согласования с интегральными схемами, высокая надежность.