
- •Введение
- •Истинное и действительное значение физической величины
- •Меры. Измерительный преобразователь, прибор, установка и система
- •Погрешности измерений и измерительных средств.
- •2.1. Упругие элементы измерительных преобразователей Разновидности упругих элементов
- •2.2. Резистивные преобразователи
- •Резистивные делители тока и напряжения
- •Контактные преобразователи и преобразователи контактного сопротивления
- •Реостатные преобразователи
- •Тензорезисторы
- •Пьезоэлектрические преобразователи силы, давления и ускорения
- •Пьезорезонансные преобразователи
- •Термочувствительные пьезорезонансные датчики
- •Коэффициенты термочувствительности
- •Измерительные преобразователи, основанные на использовании поверхностных акустических волн
- •Электростатические преобразователи в вольтметрах и датчиках уравновешивания
- •Емкостные преобразователи
- •2.5. Электромагнитные преобразователи
- •Измерительные трансформаторы и индуктивные делители напряжения
- •Магнитоэлектрические и магнитогидродинамические преобразователи датчиков уравновешивания
- •Электромагнитные преобразователи измерительных механизмов электромеханических приборов
- •Индуктивные преобразователи
- •Магнитоупругие преобразователи
- •Магнитомодуляционные преобразователи
- •Преобразователи на основе эффекта Баркгаузена
- •2.6. Гальваномагнитные преобразователи
- •Преобразователи на эффекте Холла.
- •Магниторезистивные преобразователи.
- •Гальваномагниторекомбинационные преобразователи
- •Магниторезистивные преобразователи
- •Гальваномагниторекомбинационные преобразователи
- •2.7. Электрохимические преобразователи
- •Электрохимические резистивные преобразователи
- •Гальванические преобразователи
- •Кулонометрические преобразователи
- •Полярографические преобразователи
- •Ионисторы
- •Электрокинетические преобразователи
- •2.8. Тепловые преобразователи
- •Термоэлектрические преобразователи, их принцип действия и применяемые материалы
- •Удлинительные термоэлектроды, измерительные цепи
- •Терморезисторы, основы их расчета и применяемые материалы
- •Измерительные цепи терморезисторов
- •Разновидности термочувствительных элементов
- •Промышленные термопары и термометры сопротивления
- •2.9. Оптоэлектрические преобразователи
- •Основные свойства оптического излучения и область применения
- •Оптоэлектрических преобразователей. Источники излучения и приемники.
- •Основные структурные схемы оптоэлектрических преобразователей
- •Основные законы теплового излучения
- •Источники излучения
- •Приемники излучения
- •Основные структурные схемы оптоэлектрических преобразователей
- •Измерения физических величин Методы квантовой метрологии
- •Измерение токов методом ядерного магнитного резонанса
- •Электрофизические методы
- •Калориметрический метод измерений мощности и энергии
- •Измерения параметров магнитных полей
- •Методы измерений механических напряжений, сил, моментов и давления, движения жидких и газообразных веществ, температуры, концентрации вещества
Кулонометрические преобразователи
Кулонометрические преобразователи основаны на явлении электролиза. Связь между выделившимся веществом и количеством электричества, пропущенным через преобразователь, определяется уравнением
,
где М – масса вещества; п – валентность ионов; F – постоянная Фарадея; А – молекулярная масса вещества.
Кулонометрические преобразователи получили наиболее широкое применение для интегрирования токов и напряжений, а также для измерения времени работы различных электротехнических устройств в качестве счетчиков машинного времени. Наряду с этим кулонометрические преобразователи используются для измерения влажности газов, толщины покрытий, в качестве генераторов инфранизких частот, реле времени, бесконтактных управляемых резисторов, ячеек памяти. На рис. 2-47 изображен ртутно-капиллярный кулонометрический преобразователь, состоящий из капиллярной трубки 1 диаметром 0,2–0,3 мм, заполненной двумя столбиками ртути 2 и 3, разделенными каплей раствора 4 солей ртути (например, HgI2). При прохождении через преобразователь постоянного тока происходит электролиз, в результате которого на аноде ртуть растворяется (окисляется)
Hg + 4I– → HgI4– –+2e,
а на катоде – восстанавливается:
HgI4+2e → Hg + 4I.
В результате электролиза ртуть с анода переносится на катод, что приводит к перемещению капли электролита вдоль капилляра на длину l, пропорциональную интегралу от тока за время интегрирования. Состав электролита при этом остается неизменным. Уравнение преобразования преобразователя можно представить в виде:
,
где А
Рис. 2-47
Погрешности ртутно-капиллярных преобразователей определяются точностью изготовления капилляров, способом снятия информации, а также влиянием внешних факторов, особенно температуры механических воздействий вдоль оси капилляра.
Полярографические преобразователи
Полярографические преобразователи применяются для качественного и количественного химического анализа. Принцип их действия основан на использовании явления поляризации на одном из электродов электролитической ячейки при электролизе исследуемого вещества. Полярографический преобразователь представляет собой ячейку, заполненную раствором анализируемого вещества, с двумя электродами, к которым подводится медленно нарастающее напряжение U от внешнего источника питания.
Ток, проходящий через ячейку, определяется выражением
,
где R – сопротивление ячейки; еа – потенциал анода; ек – потенциал катода.
Для того чтобы поляризация происходила только на одном электроде, его площадь выбирается в несколько сотен раз меньше площади другого электрода. Полагая потенциал неполяризующегося электрода, например еа, достаточно малым, а падение напряжения IR (R = 1000 Ом; I = 10-6 А) намного меньше приложенного напряжения U, можно определить потенциал еk для разных токов как.ekU.
Для воспроизводимости результатов измерения необходимо, чтобы поляризующийся электрод обладал однородной и непрерывно обновляющейся поверхностью и обеспечивалась стационарность процесса диффузии ионов к электроду. Лучше всего этим требованиям удовлетворяет преобразователь с непрерывно обновляющимся капающим ртутным электродом. Анодом является ртуть, заполняющая дно сосуда, катодом – капля ртути, образующаяся на конце капиллярной трубки, наполняемой ртутью из резервуара. Под влиянием собственной тяжести капля ртути падает на дно сосуда, после чего образуется следующая капля, и т.д. Период от начала образования капли до ее отрыва от капилляра обычно составляет 1–6 с. Для создания ртутного капающего электрода используются капиллярные трубки с диаметром капилляра 0,1 мм и длиной 150–200 мм.
К недостаткам ртутного электрода относятся: ядовитость ртути, невозможность исследования расплавленных солей, небольшое допустимое напряжение анодной поляризации (до +0,4 В). Последнее обусловлено электрохимической реакцией растворения ртути (окисление ртути), что не дает возможности производить анализ веществ, окисляющихся труднее ртути, т.е. при положительных потенциалах больше +0,4 В. По этим причинам начинают применяться полярографические преобразователи с твердыми электродами из платины, золота, серебра, никеля и др. Для получения тонкого диффузионного слоя электролита у электрода и обновления этого слоя используются вращающиеся по окружности или вибрирующие твердые электроды. При этом также увеличивается чувствительность преобразователя вследствие усиления диффузии вещества к электроду.