
- •Введение
- •Истинное и действительное значение физической величины
- •Меры. Измерительный преобразователь, прибор, установка и система
- •Погрешности измерений и измерительных средств.
- •2.1. Упругие элементы измерительных преобразователей Разновидности упругих элементов
- •2.2. Резистивные преобразователи
- •Резистивные делители тока и напряжения
- •Контактные преобразователи и преобразователи контактного сопротивления
- •Реостатные преобразователи
- •Тензорезисторы
- •Пьезоэлектрические преобразователи силы, давления и ускорения
- •Пьезорезонансные преобразователи
- •Термочувствительные пьезорезонансные датчики
- •Коэффициенты термочувствительности
- •Измерительные преобразователи, основанные на использовании поверхностных акустических волн
- •Электростатические преобразователи в вольтметрах и датчиках уравновешивания
- •Емкостные преобразователи
- •2.5. Электромагнитные преобразователи
- •Измерительные трансформаторы и индуктивные делители напряжения
- •Магнитоэлектрические и магнитогидродинамические преобразователи датчиков уравновешивания
- •Электромагнитные преобразователи измерительных механизмов электромеханических приборов
- •Индуктивные преобразователи
- •Магнитоупругие преобразователи
- •Магнитомодуляционные преобразователи
- •Преобразователи на основе эффекта Баркгаузена
- •2.6. Гальваномагнитные преобразователи
- •Преобразователи на эффекте Холла.
- •Магниторезистивные преобразователи.
- •Гальваномагниторекомбинационные преобразователи
- •Магниторезистивные преобразователи
- •Гальваномагниторекомбинационные преобразователи
- •2.7. Электрохимические преобразователи
- •Электрохимические резистивные преобразователи
- •Гальванические преобразователи
- •Кулонометрические преобразователи
- •Полярографические преобразователи
- •Ионисторы
- •Электрокинетические преобразователи
- •2.8. Тепловые преобразователи
- •Термоэлектрические преобразователи, их принцип действия и применяемые материалы
- •Удлинительные термоэлектроды, измерительные цепи
- •Терморезисторы, основы их расчета и применяемые материалы
- •Измерительные цепи терморезисторов
- •Разновидности термочувствительных элементов
- •Промышленные термопары и термометры сопротивления
- •2.9. Оптоэлектрические преобразователи
- •Основные свойства оптического излучения и область применения
- •Оптоэлектрических преобразователей. Источники излучения и приемники.
- •Основные структурные схемы оптоэлектрических преобразователей
- •Основные законы теплового излучения
- •Источники излучения
- •Приемники излучения
- •Основные структурные схемы оптоэлектрических преобразователей
- •Измерения физических величин Методы квантовой метрологии
- •Измерение токов методом ядерного магнитного резонанса
- •Электрофизические методы
- •Калориметрический метод измерений мощности и энергии
- •Измерения параметров магнитных полей
- •Методы измерений механических напряжений, сил, моментов и давления, движения жидких и газообразных веществ, температуры, концентрации вещества
Истинное и действительное значение физической величины
При любом измерении неизбежны обусловленные разнообразными причинами отклонения результатов измерения от истинного значения измеряемой величины. Истинные значения физических величин – это значения, идеальным образом отражающие свойства данного объекта. Они не зависят от применяемых средств измерений и являются объективной характеристикой объекта.
Результаты измерения представляют собой приближённые оценки значений величин, найденные путём измерения. Они зависят не только от величин, но и от метода измерения, от средств измерения, от свойств органов чувств оператора.[1]
Таким образом, действительное значение измеряемой величины – значение, полученное в результате измерения и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.
Виды измерений физических величин
Прямые, косвенные, совокупные и совместные измерения
Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой-либо физической величины.
Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений, и способов выражения этих результатов.
По характеру зависимости измеряемой величины от времени измерения разделяются на:
– статические, при которых измеряемая величина остается постоянной во времени;
– динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.
Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими – измерения пульсирующих давлений, вибраций.
По способу получения результатов измерений (виду уравнения измерений) их разделяют на прямые, косвенные, совокупные и совместные.
Прямые – это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q=X, где Q – искомое значение измеряемой величины, а X – значение, непосредственно получаемое из опытных данных.
При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых измерений служат измерения длины тела масштабной линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении (измерения размерных параметров), а также при контроле технологических процессов (измерение давления, температуры и др.).
Косвенные – это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.
При косвенных измерениях измеряют не собственно определяемую величину, а другие величины, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле:
Q=f(X1, X2, X3,…),
где Q – искомое значение косвенно измеряемой величины; f – знак функциональной зависимости, форма которой и природа связанных ею величин заранее известны; X1, X2, X3, ... – значения величин, измеренных прямым способом.
Примерами косвенных измерений могут служить определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.
Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль косвенных измерений особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.[2]
Совокупные – это производимые одновременно измерения нескольких одноименных величин, при которых искомую величину определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.
Примером совокупных измерений является определение массы отдельных гирь набора (калибровка по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).
Совместные – это производимые одновременно измерения двух или нескольких неодноимённых величин для нахождения зависимостей между ними.
В качестве примера совместных измерений можно назвать измерение электрического сопротивления при 20°С и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах.
Средства измерений физических величин