
- •Введение
- •Истинное и действительное значение физической величины
- •Меры. Измерительный преобразователь, прибор, установка и система
- •Погрешности измерений и измерительных средств.
- •2.1. Упругие элементы измерительных преобразователей Разновидности упругих элементов
- •2.2. Резистивные преобразователи
- •Резистивные делители тока и напряжения
- •Контактные преобразователи и преобразователи контактного сопротивления
- •Реостатные преобразователи
- •Тензорезисторы
- •Пьезоэлектрические преобразователи силы, давления и ускорения
- •Пьезорезонансные преобразователи
- •Термочувствительные пьезорезонансные датчики
- •Коэффициенты термочувствительности
- •Измерительные преобразователи, основанные на использовании поверхностных акустических волн
- •Электростатические преобразователи в вольтметрах и датчиках уравновешивания
- •Емкостные преобразователи
- •2.5. Электромагнитные преобразователи
- •Измерительные трансформаторы и индуктивные делители напряжения
- •Магнитоэлектрические и магнитогидродинамические преобразователи датчиков уравновешивания
- •Электромагнитные преобразователи измерительных механизмов электромеханических приборов
- •Индуктивные преобразователи
- •Магнитоупругие преобразователи
- •Магнитомодуляционные преобразователи
- •Преобразователи на основе эффекта Баркгаузена
- •2.6. Гальваномагнитные преобразователи
- •Преобразователи на эффекте Холла.
- •Магниторезистивные преобразователи.
- •Гальваномагниторекомбинационные преобразователи
- •Магниторезистивные преобразователи
- •Гальваномагниторекомбинационные преобразователи
- •2.7. Электрохимические преобразователи
- •Электрохимические резистивные преобразователи
- •Гальванические преобразователи
- •Кулонометрические преобразователи
- •Полярографические преобразователи
- •Ионисторы
- •Электрокинетические преобразователи
- •2.8. Тепловые преобразователи
- •Термоэлектрические преобразователи, их принцип действия и применяемые материалы
- •Удлинительные термоэлектроды, измерительные цепи
- •Терморезисторы, основы их расчета и применяемые материалы
- •Измерительные цепи терморезисторов
- •Разновидности термочувствительных элементов
- •Промышленные термопары и термометры сопротивления
- •2.9. Оптоэлектрические преобразователи
- •Основные свойства оптического излучения и область применения
- •Оптоэлектрических преобразователей. Источники излучения и приемники.
- •Основные структурные схемы оптоэлектрических преобразователей
- •Основные законы теплового излучения
- •Источники излучения
- •Приемники излучения
- •Основные структурные схемы оптоэлектрических преобразователей
- •Измерения физических величин Методы квантовой метрологии
- •Измерение токов методом ядерного магнитного резонанса
- •Электрофизические методы
- •Калориметрический метод измерений мощности и энергии
- •Измерения параметров магнитных полей
- •Методы измерений механических напряжений, сил, моментов и давления, движения жидких и газообразных веществ, температуры, концентрации вещества
Измерительные трансформаторы и индуктивные делители напряжения
Схема включения измерительных трансформаторов тока (ИТТ) и измерительных трансформаторов напряжения (ИТН) в цепь показана на рис. 2-33.
И
Рис. 2-33
и 150 В.
Точность измерительного трансформатора характеризуется двумя величинами: погрешностью коэффициента трансформации, определяющей отличие действительных вторичных токов и напряжений от номинальных, I = (Iном – I)/Iном и U = (Uном – U)/Uном и угловой погрешностью I или U, определяющей фазовый сдвиг между векторами токов или напряжений в первичной и вторичной обмотках. Угловая погрешность должна учитываться при включении во вторичную цепь фазочувствительных приборов, например ваттметра, так как показания, в частности ваттметра Р'=U2I2cos[+(U+I)], зависят от алгебраической суммы (U+I). При включении фазочувствительных приборов важно также изменить направление одного из векторов на 180° неправильным включением обмоток, поэтому концы первичных и вторичных обмоток трансформаторов маркируются, как показано на рис. 2-33.
Рис. 2-34
U2= (0,1т1 + 0,01т2 + 0,001m3)U1.
Одним из основных достоинств ИДН является то, что на его коэффициент деления мало влияет подключаемое к выходным зажимам сопротивление нагрузки.
Для идеально выполненного ИДН коэффициент деления определяется только отношением числа витков, и поэтому ИДН принципиально может обладать меньшей погрешностью, чем резистивный делитель. Как видно из эквивалентной схемы (см. рис. 2-34), чтобы обеспечить это условие, коэффициент деления в каждой ступени должен определяться основными индуктивностями L каждой секции. В соответствии с этим к выполнению ИДН предъявляются следующие требования: возможно большая основная индуктивность, малая индуктивность рассеяния, малые межвитковые и межсекционные емкости, малые потери в сердечнике и в обмотке, т.е. большое Rпот и малое r, и, наконец, идентичность всех перечисленных параметров для всех секций. Высокой идентичности добиваются применением жгутовой обмотки с равномерным расположением витков жгута на тороидальном сердечнике. Концы жгута соединяются последовательно, при 10 проводах в жгуте получается ступень ИДН с 10 секциями[1].
Применение тороидального сердечника обеспечивает относительно большую индуктивность L и высокую помехозащищенность ИДН.