
- •Курс лекций по
- •1. Понятие об операции проецирования
- •1.1. Основные свойства ортогонального поецирования
- •1.2. Эпюр гаспара монжа или комплексный чертеж
- •1.3 Безосный комплексный чертеж
- •2. Прямая. Проекции прямой линии
- •2.1. Прямые общего и частного положения
- •2.2. Определение натуральной величины и углов наклона отрезка прямой к плоскостям проекций.
- •2.4. Следы прямой линии
- •2.5. Взаимное положение двух прямых в пространстве
- •3. Плоскость. Задание плоскости на комплексном чертеже.
- •3.1 Плоскости общего и частного положений в пространстве.
- •3.2. Прямые и точки на плоскости. Главные линии на плоскости.
- •3.3. Линии наибольшего наклона плоскости к плоскостям проекций
- •4. Взаимное положение прямых и плоскостей.
- •4.1 Взаимная параллельность прямой и плоскости.
- •4.2 Взаимная параллельность двух плоскостей
- •4.3 Взаимное пересечение прямой и плоскости.
- •4.4 Взаимное пересечение двух плоскостей
- •4.5 Взаимное пересечение плоскостей, заданных следами.
- •5. Изображение многогранников
- •5.1 Виды многогранников
- •5.2 Пересечение прямой линии с поверхностью многогранника
- •5.3 Пересечение многогранника плоскостью общего положения
- •6. Способы преобразования комплексного чертежа
- •6.1. Способ введения новых плоскостей проекций
- •6.2. Построение изображений фигур по заданному направлению
- •6.3. Способы вращения вокруг прямых частного положения
- •6.3.1. Способ вращения вокруг проецирующих прямых
- •6.3.2. Способ вращения вокруг линии уровня
- •6.4. Cпособ плоскопараллельного перемещения
- •7. Взаимная перпендикулярность прямых и плоскостей
- •7.1. Взаимная перпендикулярность прямой и плоскости
- •Признак перпендикулярности прямой и плоскости на чертеже.
- •7.2. Взаимная перпендикулярность двух прямых общего положения в пространстве
- •7.3. Взаимная перпендикулярность двух плоскостей общего положения в пространстве
- •8. Метрические задачи и способы их решения
- •8.1. Решение метрических задач в общем виде
- •8.2. Решение метрических задач способами преобразования комплексного чертежа
- •8.3. Измерение расстояний
- •8.4. Измерение углов
- •9. Кривые линии и кривые поверхности
- •9.1. Кривые линии
- •9.2. Плоские кривые линии
- •9.3. Пространственные кривые
- •9.4. Проецирование кривых линий
- •9.5. Особые точки кривой линии
- •10. Поверхности
- •10.1. Способы образования и задания кривых поверхностей
- •10.2 Классификация поверхностей
- •10.3. Линейчатые поверхности
- •10.4. Поверхности вращения
- •10.5. Поверхности, задаваемые каркасом
- •10.6. Поверхности второго порядка
- •10.7. Некоторые свойства поверхностей второго порядка
- •10.8. Сечение поверхности проецирующей плоскостью и прямой линией
- •10.9 Конические сечения
- •10.10 Пересечение прямой с кривой поверхностью
- •10.11. Взаимное пересечение кривых поверхностей
- •1. Возможности применения способа вспомогательных секущих плоскостей в качестве “посредников”.
- •2. Возможности применения вспомогательных секущих сфер в качестве “посредников”.
- •10.12. Взаимное пересечение поверхностей второго порядка
- •10.13. Развертки кривых поверхностей
- •11. Аксонометрические проекции
- •11.1. Теоремы ортогональной аксонометрии
- •11.2. Стандартные аксонометрические проекции
- •Прямоугольная диметрическая проекция
- •11.3. Изображение окружности в координатной плоскости изометрической проекции
- •11.4. Изображение окружностей в координатных плоскостях диметрической проекции
- •11.5. Построение аксонометрических изображений простейших геометрических тел и задание точек на их поверхностях
- •12. Плоскости и прямые, касательные к кривым поверхностям
- •12.1. Проведение касательных к плоским кривым линиям.
- •12.2. Плоскости и прямые, касательные к кривой поверхности в данной точке
- •12.3. Примеры построения плоскостей, касательных к некоторым кривым поверхностям
- •12.4. Примеры построения прямых, касательных к кривым поверхностям в данной точке
- •12.5. Взаимное касание кривых поверхностей
- •12.6. Построение геометрических мест и их применение к решению задач
5. Изображение многогранников
Многогранником называют тело, ограниченное плоскими многоугольниками. Многогранник, расположенный по одну сторону от плоскости его грани, называют выпуклым.
Грани, вершины, и ребра многогранников связаны между собой соотношением, называемым теоремой Л. Эйлера: Г+В-Р=2, где: Г - число граней, В - число вершин и Р - число ребер.
Число граней многогранника не может быть меньше четырех, а сумма углов многоугольников, сходящихся в одной вершине, многогранных углов, не должно быть больше 2.
Основные виды многогранников: пирамида, призма, правильные многогранники и многогранники, имеющие соответствующие одинаковые двугранные углы.
Многогранник представляет собой частный случай замкнутой многогранной поверхности.
5.1 Виды многогранников
Призмой называют многогранник, у которого две одинаковые взаимно параллельные грани - основания, а остальные грани - параллелограммы.
Пирамида представляет собой многогранник, у которого одна грань (произвольный многоугольник) принимается за основание, а остальные (боковые) грани - треугольники с общей вершиной.
Правильными называются такие многогранники, у которых все грани - правильные равные многоугольники. Так как в каждой вершине многогранника должны сходиться не меньше трех многоугольников, а у правильного многоугольника все углы равны, то величина угла многоугольника (грани) должна быть меньше 2/3.
В правильном шестиугольнике углы равны 2/3, поэтому в правильном многограннике грань не может быть шестиугольником.
Из сказанного можно сделать вывод, что правильных многогранников может быт только пять. В качестве граней правильных многогранников могут быть только правильный треугольник, четырехугольник и пятиугольник. Правильными многогранниками являются:
правильный четырехгранник или тетраэдр (грань - правильный треугольник);
правильный шестигранник (куб) или гексаэдр (грань квадрат);
правильный восьмигранник или октаэдр (грань правильный треугольник);
правильный двенадцатигранник или додекаэдр (грань - правильный пятиугольник);
правильный двенадцатигранник или икосаэдр (грань - правильный треугольник).
Правильные многогранники называют Платоновы тела.
Тетраэдр Гексаэдр Додекаэдр
При изображении многогранника видимость его ребер и граней определяется с помощью конкурирующих точек.
5.2 Пересечение прямой линии с поверхностью многогранника
Задача на пересечение прямой с поверхностью многогранника решается с помощью вспомогательной секущей проецирующей плоскости, проводимой через заданную прямую (рис.4.12).
Рис.4.12
Вспомогательная горизонтально проецирующая плоскость (`) проведена через прямую l.
5.3 Пересечение многогранника плоскостью общего положения
Задача на пересечение многогранника плоскостью общего положения решается с помощью вспомогательных секущих плоскостей. На рис. 4. 12а приведен пример пересечения трехгранной призмы DEFD1E1F1 плоскостью треугольника АВС.
Рис. 4.12а
Задача на рис. 4. 12а решена с помощью вспомогательных секущих плоскостей:
(``), проведенной через сторону АВ треугольника АВС, которая пересекла призму по треугольнику 123, точки пересечения M и N c FD принадлежат искомой линии пересечения,
и вспомогательных секущих плоскостей (`) и (``), с помощью которых найдены соответственно точки P и Q линии MPQN пересечения призмы DEFD1E1F1 c треугольником АВС.
Определение видимости на чертеже не показано.