
- •ПРЕДИСЛОВИЕ
- •ЧАСТЬ I. ВАКУУМНАЯ ЭЛЕКТРОНИКА
- •Глава 1. Эмиссионная электроника
- •1.2. Эмиссионная электроника
- •1.2.1. Термоэлектронная эмиссия
- •1.2.2. Термоэлектронная эмиссия с поверхности полупроводников
- •1.2.3. Термокатоды
- •1.2.4. Фотоэлектронная эмиссия
- •1.2.5. Вторичная электронная эмиссия
- •1.2.6. Автоэлектронная эмиссия
- •Контрольные вопросы
- •Глава 2. Движение электронов в вакууме в режиме объемного заряда. Электровакуумные приборы
- •2.1. Диоды
- •2.2. Триоды
- •2.3. Многоэлектродные лампы
- •2.4. Особенности многоэлектродных ламп различного назначения
- •2.5. Генераторные и модуляторные лампы
- •2.6. Электровакуумные приборы диапазона сверхвысоких частот
- •2.6.1. Особенности движения электронов в СВЧ полях
- •2.6.2. Клистроны – приборы с динамическим управлением электронным потоком и резонансными системами
- •2.6.3. Лампы бегущей и обратной волны (ЛБВ и ЛОВ)
- •2.6.4. Лампы со скрещенными полями
- •2.6.5. Усилитель на ЛБВ типа М
- •2.6.6. Генератор на ЛОВ типа М замкнутой конструкции (карсинотрон)
- •2.6.7. Магнетроны
- •2.6.8. Статический режим работы магнетрона
- •2.6.9. Динамический режим работы магнетрона
- •Контрольные вопросы
- •Глава 3. Электронная оптика. Электронно-лучевые приборы
- •3.1. Электронные линзы
- •3.2. Электростатические линзы
- •3.2.1. Диафрагма с круглым отверстием
- •3.2.2. Иммерсионная линза
- •3.2.3. Одиночная линза
- •3.2.4. Иммерсионный объектив
- •3.3. Магнитные линзы
- •3.4. Аберрации электронных линз
- •3.5. Электронно-оптические системы (ЭОС) электронно-лучевых приборов
- •3.6. Отклоняющие системы
- •3.6.1. Электростатическое отклонение электронных пучков
- •3.6.2. Магнитное отклонение электронных пучков
- •3.7. Некоторые особенности электронной оптики интенсивных пучков
- •3.8. Приемные электронно-лучевые трубки
- •3.9. Проекционные ЭЛТ и системы
- •3.10. Запоминающие электронно-лучевые трубки
- •3.11. Передающие электронно-лучевые трубки
- •Контрольные вопросы
- •ЧАСТЬ II. ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОНИКА
- •Глава 4. Элементарные процессы в плазме
- •4.1. Введение
- •4.2. Упругие соударения электронов с атомами и молекулами газа
- •4.3. Неупругие соударения электронов с атомами и молекулами
- •4.3.1. Возбуждение
- •4.3.2. Ионизация
- •4.3.3. Ступенчатые процессы при возбуждении и ионизации молекул электронным ударом
- •4.3.4. Образование и разрушение отрицательных ионов
- •4.3.5. Диссоциация молекул
- •4.3.6. Рекомбинация
- •4.4. Движение электронов и ионов в газе
- •4.4.1. Дрейфовое движение электронов и ионов
- •4.4.2. Диффузия заряженных частиц в условиях разряда
- •Контрольные вопросы
- •Глава 5. Основные виды электрического разряда в газе
- •5.1. Классификация разрядов
- •5.2. Несамостоятельный газовый разряд
- •5.3. Условие развития самостоятельного разряда. Пробой разрядного промежутка
- •5.3.1. Тлеющий разряд
- •5.3.2. Количественная теория катодной области тлеющего разряда
- •5.3.3. Дуговой разряд
- •5.3.4. Искровой разряд
- •5.3.5. Коронный разряд
- •5.3.6. Высокочастотные разряды
- •5.3.7. Разряды на сверхвысоких частотах
- •Контрольные вопросы
- •Глава 6. Газоразрядная плазма
- •6.1. Основные понятия
- •6.2. Диагностика плазмы
- •6.2.1. Метод зондов Лангмюра
- •6.2.2. Оптические методы исследования плазмы
- •6.2.3. Сверхвысокочастотные методы диагностики плазмы
- •6.3. Теории газоразрядной плазмы
- •Контрольные вопросы
- •Глава 7. Газоразрядные приборы
- •7.1. Приборы тлеющего разряда
- •7.1.1. Световые индикаторы
- •7.1.2. Стабилитроны тлеющего разряда
- •7.1.3. Вентили (газотроны) тлеющего разряда
- •7.1.4. Тиратроны тлеющего разряда
- •7.1.5. Переключаемые световые индикаторы
- •7.2.1. Газоразрядные источники света
- •7.3. Ионизационные камеры и счетчики излучений
- •7.3.1. Ионизационные камеры
- •7.3.2. Пропорциональные счетчики
- •7.3.3. Счетчики Гейгера
- •7.4. Разрядники антенных переключателей
- •7.5. Газоразрядные индикаторные панели
- •7.6. Газоразрядные знаковые индикаторы (монодисплеи)
- •7.6.1. ГИП постоянного тока
- •7.6.2. ГИП переменного тока
- •7.6.3. Получение полутоновых изображений на ГИП
- •Контрольные вопросы
- •ЧАСТЬ III. ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА
- •8.1. Концентрация носителей заряда в полупроводниках
- •8.2. Электропроводность полупроводников
- •8.3. Диффузионное движение носителей заряда в полупроводниках
- •8.4. Неравновесные носители заряда в полупроводниках
- •8.5. Поверхностные явления в полупроводниках
- •Контрольные вопросы
- •Глава 9. Электрические переходы
- •9.1. Структура и основные параметры n-p перехода
- •9.2. Равновесное состояние n-p перехода
- •9.3. Неравновесное состояние n-p перехода. Явления инжекции и экстракции носителей заряда
- •9.4. ВАХ идеализированного перехода
- •9.5. ВАХ реального n-p перехода
- •9.7. Емкостные свойства n-p перехода
- •9.8. Контакт металл-полупроводник
- •9.9. Гетеропереходы
- •Контрольные вопросы
- •Глава 10. Полупроводниковые диоды
- •10.1. Выпрямительные диоды
- •10.2. Высокочастотные и сверхвысокочастотные диоды
- •10.3. Импульсные диоды
- •10.4. Стабилитроны
- •10.5. Полупроводниковые управляемые емкости (варикапы)
- •10.6. Туннельные и обращенные диоды
- •10.7. Диоды Шотки
- •10.8. Диоды Ганна
- •10.9. Лавинно-пролетные диоды
- •Контрольные вопросы
- •Глава 11. Биполярные транзисторы
- •11.1. Классификация биполярных транзисторов
- •11.2. Физические процессы в транзисторе
- •11.3. Распределение токов в транзисторе
- •11.4. Эффект модуляции ширины базы
- •11.5. Статические вольтамперные характеристики биполярного транзистора
- •11.6. Частотные характеристики биполярного транзистора
- •Контрольные вопросы
- •Глава 12. Тиристоры
- •12.1. Классификация тиристоров
- •12.2. Распределение токов в тиристоре
- •12.3. Особенности работы управляемых тиристоров
- •12.4. Тиристор с симметричной ВАХ
- •Контрольные вопросы
- •Глава 13. Униполярные полупроводниковые приборы
- •13.1. Классификация и основные особенности
- •13.2. Полевые транзисторы с изолированным затвором (МДП-транзисторы)
- •13.4. Дифференциальные параметры МДП-транзистора
- •13.5. Принцип работы полевого транзистора с управляющим n-p переходом
- •13.6. Частотные характеристики МДП-танзисторов
- •13.7. Сравнительная характеристика МДП и биполярного транзистора
- •13.8. Биполярный транзистор с изолированным затвором (IGBT)
- •Контрольные вопросы
- •Глава 14. Светоизлучающие и фотоэлектронные полупроводниковые приборы
- •14.1. Светоизлучающие полупроводниковые приборы
- •14.1.1. Светодиоды
- •14.2. Фотоэлектронные полупроводниковые приборы
- •14.2.1. Поглощение оптического излучения полупроводниками
- •14.2.2. Фоторезистивный эффект и приборы на его основе
- •14.2.3. Фотоэлектрический эффект в n-р переходе
- •14.2.4. Фототранзисторы и фототиристоры
- •14.2.5. Оптоэлектронные пары
- •Контрольные вопросы
- •Глава 15. Полупроводниковые датчики
- •15.1. Датчики температуры
- •15.2. Датчики деформации
- •15.3. Датчики магнитного поля
- •Контрольные вопросы
- •Глава 16. Основы квантовой электроники
- •16.2. Физические основы взаимодействия излучения с веществом
- •16.2.1. Форма и ширина спектральной линии
- •16.3. Устройство и принципы работы лазеров
- •16.3.1. Рабочее вещество
- •16.3.2. Создание инверсии
- •16.3.3. Условия создания инверсной населенности
- •16.3.4. Двухуровневая система
- •16.3.5. Трехуровневые системы
- •16.3.6. Четырехуровневая система
- •16.3.7. Оптические резонаторы
- •16.3.8. Условия самовозбуждения и насыщения усиления
- •16.4. Свойства лазерного излучения
- •16.4.1. Монохроматичность
- •16.4.2. Когерентность
- •16.4.3. Поляризация излучения
- •16.4.4. Направленность и возможность фокусирования излучения
- •16.4.5. Яркость и мощность излучения
- •16.5. Типы лазеров
- •16.5.1. Твердотельные лазеры
- •16.5.2. Рубиновый лазер
- •16.5.3. Неодимовый стеклянный лазер
- •16.5.4. Nd – ИАГ – лазеры
- •16.5.5. Газовые лазеры
- •16.5.6. Атомные лазеры
- •16.5.7. Лазеры на парах металлов
- •16.5.8. Ионные лазеры
- •16.5.9. Молекулярные лазеры
- •16.5.10. Эксимерные лазеры
- •16.5.11. Газовые лазеры в инфракрасной области спектра
- •16.5.12. Химические лазеры
- •16.5.13. Газодинамические лазеры
- •16.5.14. Электроионизационные лазеры
- •16.5.15. Полупроводниковые лазеры
- •16.5.16. Жидкостные лазеры
- •Контрольные вопросы
- •Глава 17. Основы оптоэлектроники
- •17.1. Этапы и перспективы развития оптической электроники
- •17.2. Источники излучения для оптоэлектроники
- •17.3. Фотоэлектронные приемники излучения
- •17.4. Модуляция лазерного излучения
- •17.4.1. Физические основы модуляции лазерного излучения
- •17.4.2. Оптические модуляторы
- •17.4.3. Дефлекторы
- •17.5.1. Элементная база ВОЛС
- •17.5.2. Классификация ВОЛС
- •17.6. Оптические методы запоминания и хранения информации. Оптические (лазерные) диски
- •17.7. Голографические системы хранения и обработки информации
- •17.7.1. Принцип голографии
- •17.7.2. Голографическое запоминающее устройство
- •17.7.3. Голографические схемы записи и считывания информации
- •17.8. Системы отображения информации
- •17.8.1. Особенности зрительного восприятия информации
- •17.8.2. Физические эффекты, используемые для отображения информации
- •17.8.3. Жидкокристаллические индикаторы
- •17.8.4. Жидкокристаллические индикаторные панели
- •17.9. Электролюминесцентные индикаторы
- •17.10. Дисплеи с полевой (автоэлектронной) эмиссией
- •17.11. Отражающие дисплеи (электронная бумага)
- •17.12. Системы отображения информации на основе полупроводниковых светодиодов
- •Контрольные вопросы
- •ЧАСТЬ V. ФУНКЦИОНАЛЬНАЯ, МИКРО И НАНОЭЛЕКТРОНИКА
- •Глава 18. Предмет микроэлектроники
- •18.1. Основные термины и определения
- •18.2. Классификация ИМС
- •18.2.1. Плёночные ИМС
- •18.2.2. Гибридные ИС
- •18.2.3. Полупроводниковые ИМС
- •18.2.4. Совмещенные ИМС
- •18.3. Система обозначений ИМС
- •Контрольные вопросы
- •Глава 19. Биполярные структуры в микроэлектронике
- •19.1. Транзисторы с изоляцией на основе n-p перехода
- •19.2. Транзисторы с диэлектрической изоляцией
- •19.3. Транзисторы с комбинированной изоляцией
- •19.4. Транзисторы типа p–n–p
- •19.5. Многоэмиттерные транзисторы
- •19.6. Многоколлекторные транзисторы
- •19.7. Транзисторы с диодом Шотки
- •19.8. Интегральные диоды и стабилитроны
- •Контрольные вопросы
- •Глава 20. Униполярные структуры в микроэлектронике
- •20.1.1. МДП–транзистор с алюминиевым затвором
- •20.1.3. Конструкция Д–МДП–транзисторов
- •20.1.4. Комплементарные микроэлектронные структуры
- •20.2.1. Пороговое напряжение
- •20.2.2. Вольт-амперные характеристики
- •20.4. Принцип действия МЕП-транзистора
- •20.5. Элементы полупроводниковых постоянных запоминающих устройств (ПЗУ)
- •20.5.1. МНОП-транзистор
- •20.5.3. Двухзатворный МДП–транзистор
- •Контрольные вопросы
- •Глава 21. Микроэлектроника субмикронных СБИС
- •21.2. Методы улучшения характеристик субмикронных МДП-транзисторов
- •21.2.1. Ореол
- •21.2.2. Ретроградное распределение
- •21.2.3. Подзатворный диэлектрик
- •21.2.4. Области стока и истока
- •21.2.5. Напряженный кремний
- •21.3. Субмикронные МДП-транзисторы на диэлектрических подложках
- •21.3.1. Структуры «кремний на изоляторе»
- •21.3.2. Cтруктура «кремний ни на чём»
- •21.4.1. Транзисторы с двойным и с окольцовывающим затвором
- •21.4.2. Транзисторы с вертикальным каналом
- •21.5. Особенности субмикронных транзисторов для аналоговых применений
- •Контрольные вопросы
- •Глава 22. Гетероструктуры в микроэлектронике
- •22.1. Основные свойства гетероперехода
- •22.1.1. Сверхинжекция неравновесных носителей заряда в гетеропереходе
- •22.1.2. Понятие о двухмерном электронном газе
- •22.2. Гетероструктурные полевые транзисторы
- •22.2.1. Транзистор с высокой подвижностью электронов (НЕМТ)
- •22.2.2. Псевдоморфные и метаморфные структуры (р-НЕМТ и m-НЕМТ)
- •22.2.3. НЕМТ на подложках из GaN
- •22.3. Гетеропереходные биполярные транзисторы
- •22.4. Интегральные микросхемы на гетеропереходных полевых транзисторах
- •Контрольные вопросы
- •Глава 23. Пассивные элементы ИМС
- •23.1. Полупроводниковые резисторы
- •23.2. Плёночные резисторы
- •23.3. Конденсаторы и индуктивные элементы
- •23.4. Коммутационные соединения
- •23.4.1. Задержка распространения сигнала
- •23.4.2. Электороимграция
- •Контрольные вопросы
- •Глава 24. Функциональная электроника
- •24.1. Пьезоэлектроника
- •24.2. Оптоэлектроника
- •24.3. Акустоэлектроника
- •24.4. Магнитоэлектроника
- •24.5. Криоэлектроника
- •24.6. Хемотроника
- •24.7. Молекулярная и биоэлектроника
- •24.8. Приборы с зарядовой связью
- •24.9. Диэлектрическя электроника
- •24.10. Приборы на основе аморфных материалов
- •Глава 25. ОСНОВЫ НАНОЭЛЕКТРОНИКИ
- •25.1. Квантовые основы наноэлектроники
- •25.1.1. Квантовое ограничение
- •25.1.2. Интерференционные эффекты
- •25.1.3. Туннелирование
- •25.3. Квантовые транзисторы
- •25.4. Нанотрубки в электронике
- •25.5. Графеновые транзисторы (спинтроника)
- •25.6. Молекулярная электроника
- •25.6.1. Квантовые компьютеры
- •25.7. Заключение
- •Список рекомендуемой литературы
- •CПРАВОЧНЫЙ РАЗДЕЛ
- •Содержание

Схема включения паразитного транзистора представлена на (рис. 19.4). Его коллекторный (изолирующий) переход всегда смещен в обратном направлении. Активному режиму основного транзистора соответствует режим отсечки паразитного транзистора. В этом случае его влияние невелико, так как токи утечки n-р переходов при обратных напряжениях малы.
Режиму насыщения основного транзистора соответствует активный режим работы паразитного. При этом ток утечки через него возрастает, что приводит к уменьшению базового тока основного транзистора:
IБ = IБ – Iут. |
(19.1) |
19.2. Транзисторы с диэлектрической изоляцией
Рис. 19.5. Структура транзистора с диэлектрической изоляцией
Наряду с биполярными транзисторами, изолированными n-р переходом, применяют биполярные транзисторы с диэлектрической изоляцией. Основные отличия структуры такого транзистора состоят в том, что транзистор размещают в кармане, изолированном со всех сторон от
подложки из поликристаллического кремния тонким диэлектрическим слоем диоксида кремния. Качество такой изоляции значительно выше, так как токи утечки диэлектрика на много порядков меньше, чем у n-р перехода при обратном напряжении.
Однако биполярные микросхемы с диэлектрической изоляцией не получили широкого применения вследствие сложной технологии создания карманов и малой степени интеграции. Их достоинством является повышенная радиационная стойкость. У эпитаксиально-планарных транзисторов токи утечки изолирующих n-р переходов резко возрастают при воздействии ионизирующего излучения, вызывающего генерацию большого числа неосновных носителей. Ток утечки диэлектрика при этом остается пренебрежимо малым. Уменьшаются и токи утечки коллекторных n- р переходов, так как основная масса неосновных носителей генерируется за пределами карманов и не может достичь этих переходов.
380

19.3. Транзисторы с комбинированной изоляцией
Основным методом изоляции элементов современных биполярных микросхем является метод комбинированной изоляции, сочетающий изоляцию диэлектриком (диоксидом кремния) и n-р переходом, смещенным в обратном направлении. Существует большое число конструктивно-
технологических разновидностей биполярных микросхем с комбинированной изоляцией. Широкое распространение получили микросхемы; создаваемые по изопланарной технологии.
В этом случае отдельные элементы отделены друг от друга областями диоксида кремния, образующего карманы, в каждом из которых размещена структура n+-n типа, изолированная снизу n+-р переходом (рис. 19.6).
Рис. 19.6. Структура интегрального биполярного транзистора с
комбинированной изоляцией
При этом на последующих операциях, независимо от точности совмещения маски, боковые границы базового слоя совмещаются с границами изолирующего диоксида кремния, и тем самым область базы может иметь существенно меньшую площадь. На этапе получения эмиттерных и коллекторных n+-областей также применяют метод самосовмещения: в плоскости кристалла три границы эмиттерной области (за исключением четвертой, обращенной к базовому контакту) и все границы коллекторной контактной области определяются изолирующим диоксидом, используемым вторично в качестве маски.
Главное достоинство изопланарного транзистора по сравнению с эпитаксиально-планарным состоит в том, что при одинаковой площади эмиттерных переходов общая площадь изопланарного транзистора (с учетом площади изолирующих областей) меньше почти на порядок. Поэтому на основе изопланарных транзисторов можно создавать БИС и СБИС.
Столь значительное снижение площади достигается в результате использования более тонкого эпитаксиального слоя, что приводит к
381
уменьшению площади изолирующих областей. Кроме того, в конструкции
изопланарного транзистора исключены пассивные области базы и коллектора, не используемые под контакты, так как все боковые стенки
базовой и три боковые стенки эмиттерной области непосредственно ограничены изолирующим слоем диоксида кремния.
Для предотвращения появления каналов n-типа под изолирующими областями создают противоканальные области р+-типа с повышенной концентрацией акцепторов, при которой для типичных значений плотности
положительного поверхностного заряда формирование инверсного слоя исключается, так как концентрация поступивших к поверхности электронов оказывается ниже концентрации дырок.
Скрытый n+-слой в коллекторе изопланарного транзистора необходим для подсоединения к коллектору коллекторной контактной области. Он выполняет ту же функцию, что и в эпитаксиально-планарном транзисторе.
Изопланарный транзистор по сравнению с эпитаксиально-планарным имеет лучшие импульсные и частотные параметры. Поскольку при
одинаковых площадях эмиттерных переходов сравниваемых транзисторов в изопланарном транзисторе значительно уменьшены площади коллекторного и изолирующего переходов, а следовательно, пропорционально снижены и барьерные емкости указанных переходов.
Емкости всех переходов дополнительно уменьшаются еще и потому, что боковые стороны эмиттера, базы и коллектора граничат с диоксидом кремния, имеющим меньшую, чем кремний, диэлектрическую проницаемость. Кроме того, уменьшена площадь боковых стенок базы коллектора из-за снижения периметра этих областей и толщины эпитаксиального слоя.
19.4. Транзисторы типа p–n–p
Такой тип биполярного транзистора главным образом используется как нагрузочные приборы для n-p-n переключательных транзисторов. Все существующие варианты интегральных p-n-p транзисторов существенно уступают n-p-n транзисторам по коэффициенту усиления и предельной частоте. Для их изготовления используется стандартная технология, оптимизированная для формирования n+-p-n транзистора.
Наиболее часто используются горизонтальные p-n-p транзисторы, структура которых представлена на рис. 19.7. Эти транзисторы изготавливаются одновременно с n+-p-n транзисторами по обычной технологии. Эмиттерный и коллекторный слой получают на этапе базовой диффузии, причем коллекторный слой охватывает эмиттерный со всех сторон. Базовая область формируется на основе эпитаксиального слоя с подлегированнием контактной области во время эмиттерной диффузии.
Перенос носителей в таком транзисторе протекает в горизонтальном направлении в приповерхностной области, так как здесь расстояние между
382

эмиттером и коллектором минимальное и наиболее высока концентрация примеси в p-слоях.
а) |
б) |
в)
Рис. 19.7. Структура (а) и топология (б) горизонтального и стурктура подложечного (в) транзистора p-n-р структуры
Ширина базы (wб) в p-n-p транзисторе составляет примерно 3…4 мкм (не удается сделать меньше из-за боковой диффузии). В этом случае коэффициент усиления удается получить равным 50, а предельная частота составляет 20…40 МГц. Для уменьшения действия паразитного p-n-p транзистора (p-эмиттер, n-эпитаксиальный слой, p-подложка) стремятся уменьшить площадь донной части эмиттера (его делают по возможности более узким), используют скрытый n+-слой вдоль границы эпитаксиального слоя и подложки.
Основным недостатком горизонтального p-n-p транзистора является
сравнительно большая ширина базы и однородность распределения примеси в ней (этот транзистор является бездрейфовым). Эти недостатки можно устранить использованием дрейфовой структуры, в которой два электрода в противоположных концах базы создают в базовом слое электрическое поле, уменьшающее время переноса инжектированных дырок, а также смещение на эмиттере, снижающее инжекцию из его донной части.
Совершенно не изменяя топологический процесс изготовления n+-p-n транзистора, чисто конструктивно и за счет подключения соответствующих
областей транзисторной структуры можно сформировать еще один вариант p-n-p транзистора, так называемый подложечный транзистор, в котором роль эмиттера, базы и коллектора выполняют базовая и коллекторная области основного транзистора и изолирующая область соответсвенно. Поскольку подложка микросхемы обычно подключена к точке схемы, имеющей
383