
- •ПРЕДИСЛОВИЕ
- •ЧАСТЬ I. ВАКУУМНАЯ ЭЛЕКТРОНИКА
- •Глава 1. Эмиссионная электроника
- •1.2. Эмиссионная электроника
- •1.2.1. Термоэлектронная эмиссия
- •1.2.2. Термоэлектронная эмиссия с поверхности полупроводников
- •1.2.3. Термокатоды
- •1.2.4. Фотоэлектронная эмиссия
- •1.2.5. Вторичная электронная эмиссия
- •1.2.6. Автоэлектронная эмиссия
- •Контрольные вопросы
- •Глава 2. Движение электронов в вакууме в режиме объемного заряда. Электровакуумные приборы
- •2.1. Диоды
- •2.2. Триоды
- •2.3. Многоэлектродные лампы
- •2.4. Особенности многоэлектродных ламп различного назначения
- •2.5. Генераторные и модуляторные лампы
- •2.6. Электровакуумные приборы диапазона сверхвысоких частот
- •2.6.1. Особенности движения электронов в СВЧ полях
- •2.6.2. Клистроны – приборы с динамическим управлением электронным потоком и резонансными системами
- •2.6.3. Лампы бегущей и обратной волны (ЛБВ и ЛОВ)
- •2.6.4. Лампы со скрещенными полями
- •2.6.5. Усилитель на ЛБВ типа М
- •2.6.6. Генератор на ЛОВ типа М замкнутой конструкции (карсинотрон)
- •2.6.7. Магнетроны
- •2.6.8. Статический режим работы магнетрона
- •2.6.9. Динамический режим работы магнетрона
- •Контрольные вопросы
- •Глава 3. Электронная оптика. Электронно-лучевые приборы
- •3.1. Электронные линзы
- •3.2. Электростатические линзы
- •3.2.1. Диафрагма с круглым отверстием
- •3.2.2. Иммерсионная линза
- •3.2.3. Одиночная линза
- •3.2.4. Иммерсионный объектив
- •3.3. Магнитные линзы
- •3.4. Аберрации электронных линз
- •3.5. Электронно-оптические системы (ЭОС) электронно-лучевых приборов
- •3.6. Отклоняющие системы
- •3.6.1. Электростатическое отклонение электронных пучков
- •3.6.2. Магнитное отклонение электронных пучков
- •3.7. Некоторые особенности электронной оптики интенсивных пучков
- •3.8. Приемные электронно-лучевые трубки
- •3.9. Проекционные ЭЛТ и системы
- •3.10. Запоминающие электронно-лучевые трубки
- •3.11. Передающие электронно-лучевые трубки
- •Контрольные вопросы
- •ЧАСТЬ II. ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОНИКА
- •Глава 4. Элементарные процессы в плазме
- •4.1. Введение
- •4.2. Упругие соударения электронов с атомами и молекулами газа
- •4.3. Неупругие соударения электронов с атомами и молекулами
- •4.3.1. Возбуждение
- •4.3.2. Ионизация
- •4.3.3. Ступенчатые процессы при возбуждении и ионизации молекул электронным ударом
- •4.3.4. Образование и разрушение отрицательных ионов
- •4.3.5. Диссоциация молекул
- •4.3.6. Рекомбинация
- •4.4. Движение электронов и ионов в газе
- •4.4.1. Дрейфовое движение электронов и ионов
- •4.4.2. Диффузия заряженных частиц в условиях разряда
- •Контрольные вопросы
- •Глава 5. Основные виды электрического разряда в газе
- •5.1. Классификация разрядов
- •5.2. Несамостоятельный газовый разряд
- •5.3. Условие развития самостоятельного разряда. Пробой разрядного промежутка
- •5.3.1. Тлеющий разряд
- •5.3.2. Количественная теория катодной области тлеющего разряда
- •5.3.3. Дуговой разряд
- •5.3.4. Искровой разряд
- •5.3.5. Коронный разряд
- •5.3.6. Высокочастотные разряды
- •5.3.7. Разряды на сверхвысоких частотах
- •Контрольные вопросы
- •Глава 6. Газоразрядная плазма
- •6.1. Основные понятия
- •6.2. Диагностика плазмы
- •6.2.1. Метод зондов Лангмюра
- •6.2.2. Оптические методы исследования плазмы
- •6.2.3. Сверхвысокочастотные методы диагностики плазмы
- •6.3. Теории газоразрядной плазмы
- •Контрольные вопросы
- •Глава 7. Газоразрядные приборы
- •7.1. Приборы тлеющего разряда
- •7.1.1. Световые индикаторы
- •7.1.2. Стабилитроны тлеющего разряда
- •7.1.3. Вентили (газотроны) тлеющего разряда
- •7.1.4. Тиратроны тлеющего разряда
- •7.1.5. Переключаемые световые индикаторы
- •7.2.1. Газоразрядные источники света
- •7.3. Ионизационные камеры и счетчики излучений
- •7.3.1. Ионизационные камеры
- •7.3.2. Пропорциональные счетчики
- •7.3.3. Счетчики Гейгера
- •7.4. Разрядники антенных переключателей
- •7.5. Газоразрядные индикаторные панели
- •7.6. Газоразрядные знаковые индикаторы (монодисплеи)
- •7.6.1. ГИП постоянного тока
- •7.6.2. ГИП переменного тока
- •7.6.3. Получение полутоновых изображений на ГИП
- •Контрольные вопросы
- •ЧАСТЬ III. ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА
- •8.1. Концентрация носителей заряда в полупроводниках
- •8.2. Электропроводность полупроводников
- •8.3. Диффузионное движение носителей заряда в полупроводниках
- •8.4. Неравновесные носители заряда в полупроводниках
- •8.5. Поверхностные явления в полупроводниках
- •Контрольные вопросы
- •Глава 9. Электрические переходы
- •9.1. Структура и основные параметры n-p перехода
- •9.2. Равновесное состояние n-p перехода
- •9.3. Неравновесное состояние n-p перехода. Явления инжекции и экстракции носителей заряда
- •9.4. ВАХ идеализированного перехода
- •9.5. ВАХ реального n-p перехода
- •9.7. Емкостные свойства n-p перехода
- •9.8. Контакт металл-полупроводник
- •9.9. Гетеропереходы
- •Контрольные вопросы
- •Глава 10. Полупроводниковые диоды
- •10.1. Выпрямительные диоды
- •10.2. Высокочастотные и сверхвысокочастотные диоды
- •10.3. Импульсные диоды
- •10.4. Стабилитроны
- •10.5. Полупроводниковые управляемые емкости (варикапы)
- •10.6. Туннельные и обращенные диоды
- •10.7. Диоды Шотки
- •10.8. Диоды Ганна
- •10.9. Лавинно-пролетные диоды
- •Контрольные вопросы
- •Глава 11. Биполярные транзисторы
- •11.1. Классификация биполярных транзисторов
- •11.2. Физические процессы в транзисторе
- •11.3. Распределение токов в транзисторе
- •11.4. Эффект модуляции ширины базы
- •11.5. Статические вольтамперные характеристики биполярного транзистора
- •11.6. Частотные характеристики биполярного транзистора
- •Контрольные вопросы
- •Глава 12. Тиристоры
- •12.1. Классификация тиристоров
- •12.2. Распределение токов в тиристоре
- •12.3. Особенности работы управляемых тиристоров
- •12.4. Тиристор с симметричной ВАХ
- •Контрольные вопросы
- •Глава 13. Униполярные полупроводниковые приборы
- •13.1. Классификация и основные особенности
- •13.2. Полевые транзисторы с изолированным затвором (МДП-транзисторы)
- •13.4. Дифференциальные параметры МДП-транзистора
- •13.5. Принцип работы полевого транзистора с управляющим n-p переходом
- •13.6. Частотные характеристики МДП-танзисторов
- •13.7. Сравнительная характеристика МДП и биполярного транзистора
- •13.8. Биполярный транзистор с изолированным затвором (IGBT)
- •Контрольные вопросы
- •Глава 14. Светоизлучающие и фотоэлектронные полупроводниковые приборы
- •14.1. Светоизлучающие полупроводниковые приборы
- •14.1.1. Светодиоды
- •14.2. Фотоэлектронные полупроводниковые приборы
- •14.2.1. Поглощение оптического излучения полупроводниками
- •14.2.2. Фоторезистивный эффект и приборы на его основе
- •14.2.3. Фотоэлектрический эффект в n-р переходе
- •14.2.4. Фототранзисторы и фототиристоры
- •14.2.5. Оптоэлектронные пары
- •Контрольные вопросы
- •Глава 15. Полупроводниковые датчики
- •15.1. Датчики температуры
- •15.2. Датчики деформации
- •15.3. Датчики магнитного поля
- •Контрольные вопросы
- •Глава 16. Основы квантовой электроники
- •16.2. Физические основы взаимодействия излучения с веществом
- •16.2.1. Форма и ширина спектральной линии
- •16.3. Устройство и принципы работы лазеров
- •16.3.1. Рабочее вещество
- •16.3.2. Создание инверсии
- •16.3.3. Условия создания инверсной населенности
- •16.3.4. Двухуровневая система
- •16.3.5. Трехуровневые системы
- •16.3.6. Четырехуровневая система
- •16.3.7. Оптические резонаторы
- •16.3.8. Условия самовозбуждения и насыщения усиления
- •16.4. Свойства лазерного излучения
- •16.4.1. Монохроматичность
- •16.4.2. Когерентность
- •16.4.3. Поляризация излучения
- •16.4.4. Направленность и возможность фокусирования излучения
- •16.4.5. Яркость и мощность излучения
- •16.5. Типы лазеров
- •16.5.1. Твердотельные лазеры
- •16.5.2. Рубиновый лазер
- •16.5.3. Неодимовый стеклянный лазер
- •16.5.4. Nd – ИАГ – лазеры
- •16.5.5. Газовые лазеры
- •16.5.6. Атомные лазеры
- •16.5.7. Лазеры на парах металлов
- •16.5.8. Ионные лазеры
- •16.5.9. Молекулярные лазеры
- •16.5.10. Эксимерные лазеры
- •16.5.11. Газовые лазеры в инфракрасной области спектра
- •16.5.12. Химические лазеры
- •16.5.13. Газодинамические лазеры
- •16.5.14. Электроионизационные лазеры
- •16.5.15. Полупроводниковые лазеры
- •16.5.16. Жидкостные лазеры
- •Контрольные вопросы
- •Глава 17. Основы оптоэлектроники
- •17.1. Этапы и перспективы развития оптической электроники
- •17.2. Источники излучения для оптоэлектроники
- •17.3. Фотоэлектронные приемники излучения
- •17.4. Модуляция лазерного излучения
- •17.4.1. Физические основы модуляции лазерного излучения
- •17.4.2. Оптические модуляторы
- •17.4.3. Дефлекторы
- •17.5.1. Элементная база ВОЛС
- •17.5.2. Классификация ВОЛС
- •17.6. Оптические методы запоминания и хранения информации. Оптические (лазерные) диски
- •17.7. Голографические системы хранения и обработки информации
- •17.7.1. Принцип голографии
- •17.7.2. Голографическое запоминающее устройство
- •17.7.3. Голографические схемы записи и считывания информации
- •17.8. Системы отображения информации
- •17.8.1. Особенности зрительного восприятия информации
- •17.8.2. Физические эффекты, используемые для отображения информации
- •17.8.3. Жидкокристаллические индикаторы
- •17.8.4. Жидкокристаллические индикаторные панели
- •17.9. Электролюминесцентные индикаторы
- •17.10. Дисплеи с полевой (автоэлектронной) эмиссией
- •17.11. Отражающие дисплеи (электронная бумага)
- •17.12. Системы отображения информации на основе полупроводниковых светодиодов
- •Контрольные вопросы
- •ЧАСТЬ V. ФУНКЦИОНАЛЬНАЯ, МИКРО И НАНОЭЛЕКТРОНИКА
- •Глава 18. Предмет микроэлектроники
- •18.1. Основные термины и определения
- •18.2. Классификация ИМС
- •18.2.1. Плёночные ИМС
- •18.2.2. Гибридные ИС
- •18.2.3. Полупроводниковые ИМС
- •18.2.4. Совмещенные ИМС
- •18.3. Система обозначений ИМС
- •Контрольные вопросы
- •Глава 19. Биполярные структуры в микроэлектронике
- •19.1. Транзисторы с изоляцией на основе n-p перехода
- •19.2. Транзисторы с диэлектрической изоляцией
- •19.3. Транзисторы с комбинированной изоляцией
- •19.4. Транзисторы типа p–n–p
- •19.5. Многоэмиттерные транзисторы
- •19.6. Многоколлекторные транзисторы
- •19.7. Транзисторы с диодом Шотки
- •19.8. Интегральные диоды и стабилитроны
- •Контрольные вопросы
- •Глава 20. Униполярные структуры в микроэлектронике
- •20.1.1. МДП–транзистор с алюминиевым затвором
- •20.1.3. Конструкция Д–МДП–транзисторов
- •20.1.4. Комплементарные микроэлектронные структуры
- •20.2.1. Пороговое напряжение
- •20.2.2. Вольт-амперные характеристики
- •20.4. Принцип действия МЕП-транзистора
- •20.5. Элементы полупроводниковых постоянных запоминающих устройств (ПЗУ)
- •20.5.1. МНОП-транзистор
- •20.5.3. Двухзатворный МДП–транзистор
- •Контрольные вопросы
- •Глава 21. Микроэлектроника субмикронных СБИС
- •21.2. Методы улучшения характеристик субмикронных МДП-транзисторов
- •21.2.1. Ореол
- •21.2.2. Ретроградное распределение
- •21.2.3. Подзатворный диэлектрик
- •21.2.4. Области стока и истока
- •21.2.5. Напряженный кремний
- •21.3. Субмикронные МДП-транзисторы на диэлектрических подложках
- •21.3.1. Структуры «кремний на изоляторе»
- •21.3.2. Cтруктура «кремний ни на чём»
- •21.4.1. Транзисторы с двойным и с окольцовывающим затвором
- •21.4.2. Транзисторы с вертикальным каналом
- •21.5. Особенности субмикронных транзисторов для аналоговых применений
- •Контрольные вопросы
- •Глава 22. Гетероструктуры в микроэлектронике
- •22.1. Основные свойства гетероперехода
- •22.1.1. Сверхинжекция неравновесных носителей заряда в гетеропереходе
- •22.1.2. Понятие о двухмерном электронном газе
- •22.2. Гетероструктурные полевые транзисторы
- •22.2.1. Транзистор с высокой подвижностью электронов (НЕМТ)
- •22.2.2. Псевдоморфные и метаморфные структуры (р-НЕМТ и m-НЕМТ)
- •22.2.3. НЕМТ на подложках из GaN
- •22.3. Гетеропереходные биполярные транзисторы
- •22.4. Интегральные микросхемы на гетеропереходных полевых транзисторах
- •Контрольные вопросы
- •Глава 23. Пассивные элементы ИМС
- •23.1. Полупроводниковые резисторы
- •23.2. Плёночные резисторы
- •23.3. Конденсаторы и индуктивные элементы
- •23.4. Коммутационные соединения
- •23.4.1. Задержка распространения сигнала
- •23.4.2. Электороимграция
- •Контрольные вопросы
- •Глава 24. Функциональная электроника
- •24.1. Пьезоэлектроника
- •24.2. Оптоэлектроника
- •24.3. Акустоэлектроника
- •24.4. Магнитоэлектроника
- •24.5. Криоэлектроника
- •24.6. Хемотроника
- •24.7. Молекулярная и биоэлектроника
- •24.8. Приборы с зарядовой связью
- •24.9. Диэлектрическя электроника
- •24.10. Приборы на основе аморфных материалов
- •Глава 25. ОСНОВЫ НАНОЭЛЕКТРОНИКИ
- •25.1. Квантовые основы наноэлектроники
- •25.1.1. Квантовое ограничение
- •25.1.2. Интерференционные эффекты
- •25.1.3. Туннелирование
- •25.3. Квантовые транзисторы
- •25.4. Нанотрубки в электронике
- •25.5. Графеновые транзисторы (спинтроника)
- •25.6. Молекулярная электроника
- •25.6.1. Квантовые компьютеры
- •25.7. Заключение
- •Список рекомендуемой литературы
- •CПРАВОЧНЫЙ РАЗДЕЛ
- •Содержание
Глава 19. Биполярные структуры в микроэлектронике
Транзисторы полупроводниковых микросхем имеют существенные отличия от обычных дискретных приборов. По технологическим и ряду других причин, связанных с электрофизическими параметрами полупроводниковых материалов, в микросхемах используют только кремниевые биполярные транзисторы. Наиболее широко применяют n-р-n транзисторы, так как вследствие большей подвижности электронов в базе они имеют более высокие граничные частоты и быстродействие.
Главные различия структур биполярных транзисторов полупроводниковых микросхем и дискретных транзисторов заключаются в том, что первые содержат дополнительные области, изолирующие их от общей полупроводниковой подложки, и все выводы от областей транзистора располагаются в одной плоскости на поверхности подложки. Такая структура называется планарной. Она позволяет соединять транзисторы между собой и
с другими элементами микросхемы пленочными металлическими проводниками, формируемыми на той же поверхности.
Биполярный транзистор n-p-n типа является ключевым элементом полупроводниковых микросхем. Остальные элементы микросхемы выбираются и конструируются таким образом, чтобы они совмещались с основной структурой. Их изготавливают одновременно с созданием n-p-n транзистора, поэтому конструкция и технология изготовления транзисторов
также должна обеспечивать возможность одновременного создания и других элементов (диодов, резисторов, конденсаторов и т. д) на основе полупроводниковых слоев, образованных при формировании эмиттерной, базовой или коллекторной областей транзистора. Таким образом, выбор
физической структуры транзистора однозначно определяет все основные электрические параметры микросхемы. В этом состоит важное требование конструктивно-технологической совместимости элементов полупроводниковых микросхем. Кроме того, к структурам биполярных транзисторов, как и других элементов микросхем, предъявляется специфическое требование – площадь, занимаемая ими на полупроводниковой подложке, должна быть минимально возможной для повышения плотности упаковки элементов и степени интеграции.
В отличие от дискретных полупроводниковых приборов в ИМС важное значение имеет изоляция отдельных элементов ИМС друг от друга. Вид
изоляции в основном определяет конкретную схему технологического процесса. Различают три основных способа:
∙Изоляция с помощью обратно смещенного n-р перехода;
∙ИМС с диэлектрической изоляцией;
∙ИМС с комбинированной изоляцией.
375

Каждый из видов изоляции имеет множество разновидностей и модификаций.
19.1. Транзисторы с изоляцией на основе n-p перехода
Данный способ изоляции получил наибольшее распространение при изготовлении микросхем малой степени интеграции. Поскольку обратный ток изолирующего перехода мал, обеспечивается удовлетворительная
изоляция транзистора от подложки и других элементов кристалла микросхемы. Области, окруженные со всех сторон изолирующим переходом, называют карманами. В них размещают не только биполярные транзисторы, но и другие элементы микросхемы. Обычно в каждом кармане формируют один элемент, но в некоторых случаях размещают несколько биполярных транзисторов, у которых согласно принципиальной электрической схеме соединены коллекторы.
Структура транзистора ИМС данной группы показана на (рис. 19.1).
а)
б) в)
Рис. 19.1. Структура(а) и варианты топологии (б, в) интегрального эпитаксиально-планарного n-p-n транзистора: 1 – изолирующая область, 2 – эпитаксиальный слой, 3 – скрытый слой, 4 – базовая область, 5 – эмиттерная область, 6 – коллекторная приконтактная область
376
Транзистор формируется на высокоомной подложке р–-типа толщиной 200–300 мкм в эпитаксиальном слое n-типа. Локальной диффузией донорных примесей (мышьяка или сурьмы), имеющих малый коэффициент диффузии по сравнению с бором и фосфором, в подложке перед наращиванием эпитаксиального слоя создают скрытый слой n+-типа с низким удельным сопротивлением. Хотя первоначально скрытый слой формируют в подложке, при дальнейших высокотемпературных операциях (эпитаксии, окислении, диффузии примесей) он расширяется в сторону как подложки, так и эпитаксиального слоя.
Диффузией бора через маску из диоксида кремния на глубину, превышающую толщину эпитаксиального слоя, формируют изолирующую область р+-типа, окружающую коллекторную область n-типа с боковых сторон.
Базовую область р-типа получают следующей локальной диффузией бора на глубину 2–3 мкм (глубина залегания металлургической границы коллекторного перехода). Граница базы одновременно является границей коллекторного n-р перехода и определяет его площадь. Последняя локальная диффузия используется для формирования эмиттерной области n+-типа и коллекторной приконтактной области. Донорной примесью в этом случае обычно служит фосфор, обладающий повышенным коэффициентом диффузии и повышенной растворимостью в кремнии.
Впленке диоксида кремния (толщина 0,5...1 мкм), покрывающей поверхность кристалла, создают контактные отверстия, через которые напылением пленки алюминия формируют контакты к эмиттеру, базе, коллектору и подложке. Одновременно создают внутрисхемные проводники, соединяющие элементы микросхемы. Коллекторная контактная область с высокой концентрацией доноров необходима потому, что при напылении пленки алюминия на слаболегированный слой n-типа получается выпрямляющий контакт (диод Шотки), что недопустимо.
К подложке в периферийной части кристалла микросхемы создают омический контакт (на рисунке не показан). При использовании микросхемы на этот контакт подают напряжение, при котором изолирующий переход всегда смещен в обратном направлении.
Вструктуре дискретного транзистора отсутствуют изолирующие р+- области, а контактная n+-область и вывод коллектора расположены снизу. Поэтому ряд параметров рассмотренного транзистора хуже, чем у дискретного: выше сопротивление коллекторной области, имеется ток утечки
вподложку, ниже граничная частота и быстродействие из-за влияния барьерной емкости изолирующего n-р перехода.
Основное достоинство метода изоляции n-р переходом – простота технологии формирования изолирующих областей р+-типа. Для их создания применяют такие же технологические процессы (фотолитографию, диффузию примесей), что и для получения основных областей транзистора – базовой и эмиттерной. Однако изоляция n-р переходом не является совершенной: обратный ток этого перехода резко увеличивается при
377

повышении температуры и под воздействием ионизирующих излучений. Изолирующий переход вносит барьерную емкость, которая снижает
граничную частоту аналоговых микросхем и увеличивает задержку переключения импульсных схем.
Кроме того, изолирующие области n+-типа занимают значительную площадь кристалла (по сравнению с площадью основных областей транзистора), так как их ширина должна быть больше удвоенной толщины эпитаксиального слоя. Это условие связано с изотропностью процесса диффузии: примеси диффундируют не только в глубь эпитаксиального слоя, но и в боковом направлении – под маску.
Важной конструктивной особенностью эпитаксиально-планарных транзисторов является скрытый слой n+-типа, предназначенный главным
образом для уменьшения объемного сопротивления коллекторной области и напряжения насыщения транзистора. Уменьшение удельного сопротивления
коллекторной области за счет увеличения степени легирования всего объема нерационально, так как снижается напряжение пробоя перехода коллектор– база и увеличивается емкость этого перехода, что ухудшает характеристики транзистора. Решением данной проблемы является создание скрытого высоколегированного n+-слоя на границе коллектора и подложки.
Низкоомный скрытый слой шунтирует расположенный над ним более высокоомный коллекторный слой n-типа и в десятки раз уменьшает
объемное сопротивление коллекторной области между коллекторным переходом и коллекторной контактной областью.
В области средних и больших токов (> 1 мА) существенную роль играет эффект вытеснения тока в эмиттере. При увеличении рабочего тока в транзисторе происходит увеличение плотности тока эмиттера. Напряжение в
любой точке эмиттерного перехода представляет собой разность внешнего напряжения UЭБ и падения напряжения в объеме базы, которое возрастает по мере удаления этой точки от базового контакта (рис. 19.2). В результате напряжение в центральной части эмиттера меньше напряжения у его краев, и край эмиттера приобретает большее прямое смещение, чем середина его площади, значит, внешние области эмиттера будут работать при больших плотностях тока по сравнению с внутренними. Это в свою очередь приводит
к повышению рекомбинационных потерь носителей в области краев эмиттера и уменьшению коэффициента усиления.
Рис. 19.2. Эффект оттеснения эмиттерного тока
378

Для уменьшения этого эффекта необходимо выбирать топологию мощных транзисторов таким образом, чтобы обеспечить максимальное отношение периметра эмиттера к его площади. Для транзистора средней мощности можно использовать две эмиттерные области, включенные параллельно, для мощного транзистора использовать «гребенчатую» структуру, т.е. область в которой эмиттерные и базовые области чередуются
(рис. 19.3).
Для уменьшения сопротивления коллектора также используют семеричную конфигурацию коллектора (рис. 19.3). В этом случае коллекторный ток протекает к эмиттеру с трех сторон, и сопротивление коллектора оказывается примерно в три раза меньше, чем в структуре с одним выводом коллектора. Для конструкции транзистора симметричной конфигурацией облегчается разработка топологии металлической разводки,
так как в ней оказывается возможным часть коллекторной области разместить под окислом, а поверх оксида над коллектором провести проводник к эмиттерной или базовой области.
а) |
б) |
Рис. 19.3. Поперечное сечение (а) и топология (б) биполярного n-p-n
транзистора повышенной мощности с симметричным коллектором и эмиттером гребенчатой структуры
В структуре транзистора, изолированного n-р переходом, помимо основного транзистора существует паразитный р-п-р транзистор. Его эмиттером является базовый слой основного транзистора, базой – коллекторная область со скрытым слоем, а коллектором является подложка.
Рис. 19.4. Схема включения паразитного р-п-р транзистора
379