
- •ПРЕДИСЛОВИЕ
- •ЧАСТЬ I. ВАКУУМНАЯ ЭЛЕКТРОНИКА
- •Глава 1. Эмиссионная электроника
- •1.2. Эмиссионная электроника
- •1.2.1. Термоэлектронная эмиссия
- •1.2.2. Термоэлектронная эмиссия с поверхности полупроводников
- •1.2.3. Термокатоды
- •1.2.4. Фотоэлектронная эмиссия
- •1.2.5. Вторичная электронная эмиссия
- •1.2.6. Автоэлектронная эмиссия
- •Контрольные вопросы
- •Глава 2. Движение электронов в вакууме в режиме объемного заряда. Электровакуумные приборы
- •2.1. Диоды
- •2.2. Триоды
- •2.3. Многоэлектродные лампы
- •2.4. Особенности многоэлектродных ламп различного назначения
- •2.5. Генераторные и модуляторные лампы
- •2.6. Электровакуумные приборы диапазона сверхвысоких частот
- •2.6.1. Особенности движения электронов в СВЧ полях
- •2.6.2. Клистроны – приборы с динамическим управлением электронным потоком и резонансными системами
- •2.6.3. Лампы бегущей и обратной волны (ЛБВ и ЛОВ)
- •2.6.4. Лампы со скрещенными полями
- •2.6.5. Усилитель на ЛБВ типа М
- •2.6.6. Генератор на ЛОВ типа М замкнутой конструкции (карсинотрон)
- •2.6.7. Магнетроны
- •2.6.8. Статический режим работы магнетрона
- •2.6.9. Динамический режим работы магнетрона
- •Контрольные вопросы
- •Глава 3. Электронная оптика. Электронно-лучевые приборы
- •3.1. Электронные линзы
- •3.2. Электростатические линзы
- •3.2.1. Диафрагма с круглым отверстием
- •3.2.2. Иммерсионная линза
- •3.2.3. Одиночная линза
- •3.2.4. Иммерсионный объектив
- •3.3. Магнитные линзы
- •3.4. Аберрации электронных линз
- •3.5. Электронно-оптические системы (ЭОС) электронно-лучевых приборов
- •3.6. Отклоняющие системы
- •3.6.1. Электростатическое отклонение электронных пучков
- •3.6.2. Магнитное отклонение электронных пучков
- •3.7. Некоторые особенности электронной оптики интенсивных пучков
- •3.8. Приемные электронно-лучевые трубки
- •3.9. Проекционные ЭЛТ и системы
- •3.10. Запоминающие электронно-лучевые трубки
- •3.11. Передающие электронно-лучевые трубки
- •Контрольные вопросы
- •ЧАСТЬ II. ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОНИКА
- •Глава 4. Элементарные процессы в плазме
- •4.1. Введение
- •4.2. Упругие соударения электронов с атомами и молекулами газа
- •4.3. Неупругие соударения электронов с атомами и молекулами
- •4.3.1. Возбуждение
- •4.3.2. Ионизация
- •4.3.3. Ступенчатые процессы при возбуждении и ионизации молекул электронным ударом
- •4.3.4. Образование и разрушение отрицательных ионов
- •4.3.5. Диссоциация молекул
- •4.3.6. Рекомбинация
- •4.4. Движение электронов и ионов в газе
- •4.4.1. Дрейфовое движение электронов и ионов
- •4.4.2. Диффузия заряженных частиц в условиях разряда
- •Контрольные вопросы
- •Глава 5. Основные виды электрического разряда в газе
- •5.1. Классификация разрядов
- •5.2. Несамостоятельный газовый разряд
- •5.3. Условие развития самостоятельного разряда. Пробой разрядного промежутка
- •5.3.1. Тлеющий разряд
- •5.3.2. Количественная теория катодной области тлеющего разряда
- •5.3.3. Дуговой разряд
- •5.3.4. Искровой разряд
- •5.3.5. Коронный разряд
- •5.3.6. Высокочастотные разряды
- •5.3.7. Разряды на сверхвысоких частотах
- •Контрольные вопросы
- •Глава 6. Газоразрядная плазма
- •6.1. Основные понятия
- •6.2. Диагностика плазмы
- •6.2.1. Метод зондов Лангмюра
- •6.2.2. Оптические методы исследования плазмы
- •6.2.3. Сверхвысокочастотные методы диагностики плазмы
- •6.3. Теории газоразрядной плазмы
- •Контрольные вопросы
- •Глава 7. Газоразрядные приборы
- •7.1. Приборы тлеющего разряда
- •7.1.1. Световые индикаторы
- •7.1.2. Стабилитроны тлеющего разряда
- •7.1.3. Вентили (газотроны) тлеющего разряда
- •7.1.4. Тиратроны тлеющего разряда
- •7.1.5. Переключаемые световые индикаторы
- •7.2.1. Газоразрядные источники света
- •7.3. Ионизационные камеры и счетчики излучений
- •7.3.1. Ионизационные камеры
- •7.3.2. Пропорциональные счетчики
- •7.3.3. Счетчики Гейгера
- •7.4. Разрядники антенных переключателей
- •7.5. Газоразрядные индикаторные панели
- •7.6. Газоразрядные знаковые индикаторы (монодисплеи)
- •7.6.1. ГИП постоянного тока
- •7.6.2. ГИП переменного тока
- •7.6.3. Получение полутоновых изображений на ГИП
- •Контрольные вопросы
- •ЧАСТЬ III. ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА
- •8.1. Концентрация носителей заряда в полупроводниках
- •8.2. Электропроводность полупроводников
- •8.3. Диффузионное движение носителей заряда в полупроводниках
- •8.4. Неравновесные носители заряда в полупроводниках
- •8.5. Поверхностные явления в полупроводниках
- •Контрольные вопросы
- •Глава 9. Электрические переходы
- •9.1. Структура и основные параметры n-p перехода
- •9.2. Равновесное состояние n-p перехода
- •9.3. Неравновесное состояние n-p перехода. Явления инжекции и экстракции носителей заряда
- •9.4. ВАХ идеализированного перехода
- •9.5. ВАХ реального n-p перехода
- •9.7. Емкостные свойства n-p перехода
- •9.8. Контакт металл-полупроводник
- •9.9. Гетеропереходы
- •Контрольные вопросы
- •Глава 10. Полупроводниковые диоды
- •10.1. Выпрямительные диоды
- •10.2. Высокочастотные и сверхвысокочастотные диоды
- •10.3. Импульсные диоды
- •10.4. Стабилитроны
- •10.5. Полупроводниковые управляемые емкости (варикапы)
- •10.6. Туннельные и обращенные диоды
- •10.7. Диоды Шотки
- •10.8. Диоды Ганна
- •10.9. Лавинно-пролетные диоды
- •Контрольные вопросы
- •Глава 11. Биполярные транзисторы
- •11.1. Классификация биполярных транзисторов
- •11.2. Физические процессы в транзисторе
- •11.3. Распределение токов в транзисторе
- •11.4. Эффект модуляции ширины базы
- •11.5. Статические вольтамперные характеристики биполярного транзистора
- •11.6. Частотные характеристики биполярного транзистора
- •Контрольные вопросы
- •Глава 12. Тиристоры
- •12.1. Классификация тиристоров
- •12.2. Распределение токов в тиристоре
- •12.3. Особенности работы управляемых тиристоров
- •12.4. Тиристор с симметричной ВАХ
- •Контрольные вопросы
- •Глава 13. Униполярные полупроводниковые приборы
- •13.1. Классификация и основные особенности
- •13.2. Полевые транзисторы с изолированным затвором (МДП-транзисторы)
- •13.4. Дифференциальные параметры МДП-транзистора
- •13.5. Принцип работы полевого транзистора с управляющим n-p переходом
- •13.6. Частотные характеристики МДП-танзисторов
- •13.7. Сравнительная характеристика МДП и биполярного транзистора
- •13.8. Биполярный транзистор с изолированным затвором (IGBT)
- •Контрольные вопросы
- •Глава 14. Светоизлучающие и фотоэлектронные полупроводниковые приборы
- •14.1. Светоизлучающие полупроводниковые приборы
- •14.1.1. Светодиоды
- •14.2. Фотоэлектронные полупроводниковые приборы
- •14.2.1. Поглощение оптического излучения полупроводниками
- •14.2.2. Фоторезистивный эффект и приборы на его основе
- •14.2.3. Фотоэлектрический эффект в n-р переходе
- •14.2.4. Фототранзисторы и фототиристоры
- •14.2.5. Оптоэлектронные пары
- •Контрольные вопросы
- •Глава 15. Полупроводниковые датчики
- •15.1. Датчики температуры
- •15.2. Датчики деформации
- •15.3. Датчики магнитного поля
- •Контрольные вопросы
- •Глава 16. Основы квантовой электроники
- •16.2. Физические основы взаимодействия излучения с веществом
- •16.2.1. Форма и ширина спектральной линии
- •16.3. Устройство и принципы работы лазеров
- •16.3.1. Рабочее вещество
- •16.3.2. Создание инверсии
- •16.3.3. Условия создания инверсной населенности
- •16.3.4. Двухуровневая система
- •16.3.5. Трехуровневые системы
- •16.3.6. Четырехуровневая система
- •16.3.7. Оптические резонаторы
- •16.3.8. Условия самовозбуждения и насыщения усиления
- •16.4. Свойства лазерного излучения
- •16.4.1. Монохроматичность
- •16.4.2. Когерентность
- •16.4.3. Поляризация излучения
- •16.4.4. Направленность и возможность фокусирования излучения
- •16.4.5. Яркость и мощность излучения
- •16.5. Типы лазеров
- •16.5.1. Твердотельные лазеры
- •16.5.2. Рубиновый лазер
- •16.5.3. Неодимовый стеклянный лазер
- •16.5.4. Nd – ИАГ – лазеры
- •16.5.5. Газовые лазеры
- •16.5.6. Атомные лазеры
- •16.5.7. Лазеры на парах металлов
- •16.5.8. Ионные лазеры
- •16.5.9. Молекулярные лазеры
- •16.5.10. Эксимерные лазеры
- •16.5.11. Газовые лазеры в инфракрасной области спектра
- •16.5.12. Химические лазеры
- •16.5.13. Газодинамические лазеры
- •16.5.14. Электроионизационные лазеры
- •16.5.15. Полупроводниковые лазеры
- •16.5.16. Жидкостные лазеры
- •Контрольные вопросы
- •Глава 17. Основы оптоэлектроники
- •17.1. Этапы и перспективы развития оптической электроники
- •17.2. Источники излучения для оптоэлектроники
- •17.3. Фотоэлектронные приемники излучения
- •17.4. Модуляция лазерного излучения
- •17.4.1. Физические основы модуляции лазерного излучения
- •17.4.2. Оптические модуляторы
- •17.4.3. Дефлекторы
- •17.5.1. Элементная база ВОЛС
- •17.5.2. Классификация ВОЛС
- •17.6. Оптические методы запоминания и хранения информации. Оптические (лазерные) диски
- •17.7. Голографические системы хранения и обработки информации
- •17.7.1. Принцип голографии
- •17.7.2. Голографическое запоминающее устройство
- •17.7.3. Голографические схемы записи и считывания информации
- •17.8. Системы отображения информации
- •17.8.1. Особенности зрительного восприятия информации
- •17.8.2. Физические эффекты, используемые для отображения информации
- •17.8.3. Жидкокристаллические индикаторы
- •17.8.4. Жидкокристаллические индикаторные панели
- •17.9. Электролюминесцентные индикаторы
- •17.10. Дисплеи с полевой (автоэлектронной) эмиссией
- •17.11. Отражающие дисплеи (электронная бумага)
- •17.12. Системы отображения информации на основе полупроводниковых светодиодов
- •Контрольные вопросы
- •ЧАСТЬ V. ФУНКЦИОНАЛЬНАЯ, МИКРО И НАНОЭЛЕКТРОНИКА
- •Глава 18. Предмет микроэлектроники
- •18.1. Основные термины и определения
- •18.2. Классификация ИМС
- •18.2.1. Плёночные ИМС
- •18.2.2. Гибридные ИС
- •18.2.3. Полупроводниковые ИМС
- •18.2.4. Совмещенные ИМС
- •18.3. Система обозначений ИМС
- •Контрольные вопросы
- •Глава 19. Биполярные структуры в микроэлектронике
- •19.1. Транзисторы с изоляцией на основе n-p перехода
- •19.2. Транзисторы с диэлектрической изоляцией
- •19.3. Транзисторы с комбинированной изоляцией
- •19.4. Транзисторы типа p–n–p
- •19.5. Многоэмиттерные транзисторы
- •19.6. Многоколлекторные транзисторы
- •19.7. Транзисторы с диодом Шотки
- •19.8. Интегральные диоды и стабилитроны
- •Контрольные вопросы
- •Глава 20. Униполярные структуры в микроэлектронике
- •20.1.1. МДП–транзистор с алюминиевым затвором
- •20.1.3. Конструкция Д–МДП–транзисторов
- •20.1.4. Комплементарные микроэлектронные структуры
- •20.2.1. Пороговое напряжение
- •20.2.2. Вольт-амперные характеристики
- •20.4. Принцип действия МЕП-транзистора
- •20.5. Элементы полупроводниковых постоянных запоминающих устройств (ПЗУ)
- •20.5.1. МНОП-транзистор
- •20.5.3. Двухзатворный МДП–транзистор
- •Контрольные вопросы
- •Глава 21. Микроэлектроника субмикронных СБИС
- •21.2. Методы улучшения характеристик субмикронных МДП-транзисторов
- •21.2.1. Ореол
- •21.2.2. Ретроградное распределение
- •21.2.3. Подзатворный диэлектрик
- •21.2.4. Области стока и истока
- •21.2.5. Напряженный кремний
- •21.3. Субмикронные МДП-транзисторы на диэлектрических подложках
- •21.3.1. Структуры «кремний на изоляторе»
- •21.3.2. Cтруктура «кремний ни на чём»
- •21.4.1. Транзисторы с двойным и с окольцовывающим затвором
- •21.4.2. Транзисторы с вертикальным каналом
- •21.5. Особенности субмикронных транзисторов для аналоговых применений
- •Контрольные вопросы
- •Глава 22. Гетероструктуры в микроэлектронике
- •22.1. Основные свойства гетероперехода
- •22.1.1. Сверхинжекция неравновесных носителей заряда в гетеропереходе
- •22.1.2. Понятие о двухмерном электронном газе
- •22.2. Гетероструктурные полевые транзисторы
- •22.2.1. Транзистор с высокой подвижностью электронов (НЕМТ)
- •22.2.2. Псевдоморфные и метаморфные структуры (р-НЕМТ и m-НЕМТ)
- •22.2.3. НЕМТ на подложках из GaN
- •22.3. Гетеропереходные биполярные транзисторы
- •22.4. Интегральные микросхемы на гетеропереходных полевых транзисторах
- •Контрольные вопросы
- •Глава 23. Пассивные элементы ИМС
- •23.1. Полупроводниковые резисторы
- •23.2. Плёночные резисторы
- •23.3. Конденсаторы и индуктивные элементы
- •23.4. Коммутационные соединения
- •23.4.1. Задержка распространения сигнала
- •23.4.2. Электороимграция
- •Контрольные вопросы
- •Глава 24. Функциональная электроника
- •24.1. Пьезоэлектроника
- •24.2. Оптоэлектроника
- •24.3. Акустоэлектроника
- •24.4. Магнитоэлектроника
- •24.5. Криоэлектроника
- •24.6. Хемотроника
- •24.7. Молекулярная и биоэлектроника
- •24.8. Приборы с зарядовой связью
- •24.9. Диэлектрическя электроника
- •24.10. Приборы на основе аморфных материалов
- •Глава 25. ОСНОВЫ НАНОЭЛЕКТРОНИКИ
- •25.1. Квантовые основы наноэлектроники
- •25.1.1. Квантовое ограничение
- •25.1.2. Интерференционные эффекты
- •25.1.3. Туннелирование
- •25.3. Квантовые транзисторы
- •25.4. Нанотрубки в электронике
- •25.5. Графеновые транзисторы (спинтроника)
- •25.6. Молекулярная электроника
- •25.6.1. Квантовые компьютеры
- •25.7. Заключение
- •Список рекомендуемой литературы
- •CПРАВОЧНЫЙ РАЗДЕЛ
- •Содержание

а) б)
Рис. 9.9. Зонная структура гетероперехода между полупроводниками одного типа проводимости (а) и гомоперехода (б)
Применение гетеропереходов позволяет значительно повысить потенциальный барьер для неосновных показателей, что позволяет создавать приборы с повышенным быстродействием.
Контрольные вопросы
1.Электронно-дырочный переход создан в полупроводнике с резко
различающимися удельными сопротивлениями электронной и дырочной областей. В какой области, в основном, сосредоточен переход?
2.Какой переход будет более резким: полученный сплавлением или диффузией примесей?
3.Чем определяется и от каких факторов зависит концентрация неосновных носителей заряда на границах n-р перехода?
4.Можно ли измерить вольтметром контактную разность потенциалов n-р перехода? Почему?
5.Концентрация примесей в электронной области на три порядка выше концентрации примесей в дырочной области. Какими носителями будет обусловлен прямой и обратный токи через электронно-дырочный переход?
6.Как изменяется средняя напряженность электрического поля в равновесном n-р переходе при увеличении концентрации примесей в обеих областях?
7.Объясните, возможна ли ситуация, когда в n-р переходе высота потенциального барьера U0 превышает ширину запрещенной зоны?
8.При каких условиях возможно образование омического перехода между металлом и полупроводником?
9.Может ли переход состоять из двух областей с одинаковым типом проводимости?
175
10.Почему и при каких условиях на гетеропереходе может происходить выпрямление без инжекции неосновных носителей заряда?
ЗАДАЧИ И ЗАДАНИЯ для практических занятий и самостоятельной работы
1.Кремниевый n–р переход, находящийся при комнатной температуре, имеет концентрацию примесей NA = 1024 м–3, ND = 1022 м–3. Вычислите: высоту потенциального барьера φк, максимальное значение внешнего напряжения, при котором ещё сохраняется низкий уровень инжекции. Известно, что ni = 1,48.1022 м–3.
2. Как изменяется величина контактной разности потенциалов
n-p перехода в кремнии при изменении температуры с 300 К до 400 К? Концентрации основных носителей nn = 1012 см–3 и pp = 1015 см–3.
3.Лавинный пробой в кремниевом диоде происходит, когда
напряжённость электрического поля достигает 250 кВ/см. Вычислите
напряжение пробоя при следующих исходных данных: NА = 1019 см–3,
ND = 1014 см–3, Ln = 90 мкм, Lр = 10 мкм.
4.Определить равновесную ширину n-р перехода (d0) в германии, если
контактная разность потенциалов φк = 0,42 В, удельное сопротивление электронной области ρn = 0,01 Ом.см, а дырочный ρр = 10 Ом.см.
5.Найти величину контактной разности потенциалов n-p перехода в
германии при комнатной температуре, зная, что удельная электропроводность электронной области 31,2 См/м, а дырочной 225 См/м. Насколько изменится ее величина, если температура увеличится до 400 К.
6.Ширина n-р перехода в германии при приложенном обратном напряжении Uобр. = –20 B имеет величину d = 1,9.10–4 см. Определить равновесную ширину перехода d0, если контактная разность потенциалов φк = 0,4 B.
7. |
Определить |
ток |
насыщения jнас |
при |
комнатной |
температуре |
|
n-р перехода, |
полученного в германии, для |
которого |
nn = 1016 см–3, |
||
|
рр = 5.1014 см–3, S = 0,05 см2, Ln = 0,15 см, Lр = 0,1 см. |
|
||||
8. |
Найдите значение барьерной емкости Cбар, приходящейся на 1 см2 |
|||||
|
поверхности симметричного n-р перехода в кремнии при Uпр = 0,3 B и |
|||||
|
при Uобр= –50 B. ND = NА = 1015 см–3, температура комнатная. |
|||||
9. |
Найдите среднюю |
напряженность |
электрического |
поля Еср в |
||
|
n-р переходе в германии при Uобр = –10 B, NА = 1014 см–3, электронная |
область легирована значительно сильнее. Значением φк пренебречь по сравнению c Uобр.
10.Найти отношение плотностей тока основных и неосновных носителей в
p-области германиевого диода при комнатной температуре и 450 К. Контактная разность потенциалов φк = 0,62 В, ND = NА = 1015 см–3.
176
11. Кремниевый n-р переход имеет следующие данные: ширина перехода
d = 10–3 см, концентрация |
акцепторных |
примесей |
NA = 1019 см–3, |
концентрация донорных |
примесей ND |
= 2.1016 |
см–3, площадь |
поперечного сечения перехода S = 10–4 см2, длина областей ln = 10–4 см, lp = 10–3 см, коэффициенты диффузии неосновных носителей Dр = 8 см2/с, Dn = 25 см2/с, концентрация собственных носителей заряда ni =1,5.1010 см–3. Определить: обратный ток насыщения I0, прямой ток Iпр и падение напряжения на объемах р- и n-областей при прямом напряжении равном 0,65 В.
12.Найти плотность тока насыщения n-p перехода в Si при 300 К, если удельное сопротивление n-области 50 Ом·см, а р-области 10 Ом·см. Диффузионная длина электронов 0,05 см, а дырок 0,03 см.
177