
- •Лекция 1 Приближённые методы решения слау
- •В) Метод Гаусса. (Метод последовательного исключения переменных)
- •Прямой ход.
- •Формулы прямого хода
- •Обратный ход
- •Формулы обратного хода.
- •Интерполяция, аппроксимация.
- •Оценка погрешности:
- •Приближённое интегрирование функций
- •1) Интегрирование по методу прямоугольников.
- •2) Интегрирование по методу трапеций.
- •3) Интегрирование по методу Симпсона.
- •2.1) Отделение корней.
- •Уточнение корней до заданной точности.
- •1) Метод половинного деления (дихотомии).
- •2) Метод хорд.
- •2) Метод Ньютона (касательных).
- •4) Комбинированный метод (хорд и касательных).
- •Постановка задачи.
- •1Ый усовершенствованный метод Эйлера.
- •2Oй усовершенствованный метод Эйлера.
- •Многошаговые методы.
2) Метод Ньютона (касательных).
Пусть на отрезке [a,b] функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производные f ′(x) и f ″(x) сохраняют постоянный знак на интервале (a,b).
Геометрический смысл метода касательных состоит в том, что дуга кривой
y = f(x) заменяется касательной к этой кривой.
Рис.7. Иллюстрация метода касательных.
Выберем в качестве начального приближения х0 = a и проведём в точке А0(a,f(a)) касательную к графику функции f(x). Абсцисса пересечения касательной с осью Ох (у = 0) является первым приближением к корню (рси.7):
или х0
=
.
Через точку А1(х1;f(x1)) снова проведём касательную, абсцисса точки пересечения которой даст второе приближение х2 корня ξ и т.д. Очевидно, что в точке Аn(xn;f(xn)):
y − f(xn) = f ′(xn)(x−xn)
и алгоритм метода Ньютона запишется так:
(4)
Заметим, что в нашем случае, если положить х0 = b и провести касательную к кривой
у = f(x) в точке b, то первое приближение не принадлежит отрезку [a,b].
Таким образом, в качестве начального приближения х0 выбирается тот конец интервала [a,b], для которого знаки f(x) и f ″(x) одинаковы.
Условие окончания вычислений:
│сn+1 − cn│< ε или │f(cn)│< ε1.
Для оценки погрешности можно пользоваться общей формулой
,
где
4) Комбинированный метод (хорд и касательных).
Методы хорд и касательных дают приближения корня с разных сторон. Поэтому их часто применяют в сочетании друг с другом, и уточнение корня происходит быстрее.
Пусть дано уравнение f(x)=0, корень ξ отделён и находится на отрезке [a,b]. Применим комбинированный метод хорд и касательных с учётом типа графика функции (рис.4).
Если f (x)·f ″(x) < 0 (рис.4 в, г), то методом хорд получаем значение корня с избытком, а методом касательных – с недостатком.
Если f (x)·f ″(x) > 0 (рис.4 а, б), то метод хорд даёт приближение корня с недостатком, а метод касательных – с избытком.
Рассмотрим случай, когда f (b) < 0, f ″(x) > 0 (рис.8), то со стороны конца а лежат приближённые значения корня, полученные по методу касательных, а со стороны конца b – значения, полученные по методу хорд.
Рис.8 Иллюстрация комбинированного метода.
Тогда
,
.
Теперь истинный корень ξ находится на интервале [a1,b1]. Применяя к этому интервалу комбинированный метод, получаем
,
и вообще
,
.(5)
Для случая, когда f (b)·f ″(x) > 0, то рассуждая аналогично, получим следующие формулы для уточнения корня уравнения:
,
.(6)
Комбинированный метод очень удобен при оценке погрешности вычислений. Процесс вычислений прекращается, как только станет выполняться неравенство
|bn+1–an+1| < ε.
Корень уравнения есть среднее арифметическое последних полученных значений: ξ=(an+1+bn+1)/2
Лекция 5.
Приближённое решение обыкновенных дифференциальных уравнений и систем обыкновенных дифференциальных уравнений.
Пусть функция у = f(x,y) отражает количественную сторону некоторого явления. Рассматривая это явление, мы можем установить характер зависимости между величинами х и у, а также производными от у по х, т.е. написать дифференциальное уравнение.
Определение: Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную х, искомую функцию y=f(x) и её производные.
Запись:
F(
x,
y,
y′,
y′′,…,
y(n))
= 0 или
.
Определение: Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение.
у′-2ху3+5=0----- уравнение первого порядка,
у″+ky′-by-sinx=0------ уравнение второго порядка.
Задача Коши (для уравнения первого порядка):
у′ = f(x, y) (1) найти решение y = y(x),
удовлетворяющее начальному условию: у(х0)=у0. (1*).
Т.е. найти интегральную кривую, проходящую через точку М(х0, у0).
Если
f(x,y)
непрерывна в области R:
|x-x0|
< a,
|y-y0|
< b,
то существует по меньшей мере одно
решение у = у(х), определённое в некоторой
окрестности: |х-х0|
< h,
где h
― положительное число. Это решение
единственно, если в R
выполнено условие
Липшица:
(2)
Где
N―
постоянная (константа Липшица), зависящая
в общем случае от a
и b.
Если f(x,y)
имеет ограниченную производную
вR,
то можно положить:
Для дифференциального уравнения n-го порядка: у(n)=f(x,y,y′,…,y(n-1)) задача Коши состоит в нахождении решения у = у(х), удовлетворяющего начальным условиям:
у(х0)
= у0,
у′(х0)
= у′0,
…, у(n-1)(x0)
= y(n-1)0
― заданные числа.
Функция у = f(x, C1, C2,…, Cn), где С1,…, Сn― произвольные постоянные, называется общим решением ОДУ или общим интегралом.
Эти постоянные можно определить с помощью начальных условий. Решение ДУ при заданных начальных условиях называется его частным решением.
Определение: задача называется краевой, если указывается интервал интегрирования [a,b] и ставятся дополнительные условия для значений функции у и её производных на концах этого интервала.
Процесс познания закономерностей и стремление создать детальную картину исследуемых явлений приводит к более сложной количественной оценке, отражающей эти явления, а именно к функции многих переменных, зависящих как от пространственных координат, так и от времени u = f(x1, x2,…, xn, t).
Определение: Дифференциальным уравнением с частными производными называется уравнение, связывающее независимую переменные х1, х2, …, хn, t, искомую функцию
u = f (х1, х2, …, хn, t) и её частные производные:
.